A macroscopic film (2.5 cm × 2.5 cm) made by layer-by-layer assembly of 100 single-layer polycrystalline graphene films is reported. The graphene layers are transferred and stacked one by one using a wet process that leads to layer defects and interstitial contamination. Heat-treatment of the sample up to 2800 °C results in the removal of interstitial contaminants and the healing of graphene layer defects. The resulting stacked graphene sample is a freestanding film with near-perfect in-plane crystallinity but a mixed stacking order through the thickness, which separates it from all existing carbon materials. Macroscale tensile tests yields maximum values of 62 GPa for the Young's modulus and 0.70 GPa for the fracture strength, significantly higher than has been reported for any other macroscale carbon films; microscale tensile tests yield maximum values of 290 GPa for the Young's modulus and 5.8 GPa for the fracture strength. The measured in-plane thermal conductivity is exceptionally high, 2292 ± 159 W m K while in-plane electrical conductivity is 2.2 × 10 S m . The high performance of these films is attributed to the combination of the high in-plane crystalline order and unique stacking configuration through the thickness.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201903039DOI Listing

Publication Analysis

Top Keywords

mixed stacking
8
stacking order
8
layer defects
8
tensile tests
8
maximum values
8
gpa young's
8
young's modulus
8
gpa fracture
8
fracture strength
8
ultrastiff strong
4

Similar Publications

TiZrMoC coatings were deposited on Si(100) substrates using a DC dual magnetron sputtering. The composition was controlled by adjusting the sputtering parameters of the TiZrMo and graphite targets. The influence of graphite target current on the resulting coating properties was explored.

View Article and Find Full Text PDF

Background: Accurate fasting plasma glucose (FPG) trend prediction is important for management and treatment of patients with type 2 diabetes mellitus (T2DM), a globally prevalent chronic disease. (Generalised) linear mixed-effects (LME) models and machine learning (ML) are commonly used to analyse longitudinal data; however, the former is insufficient for dealing with complex, nonlinear data, whereas with the latter, random effects are ignored. The aim of this study was to develop LME, back propagation neural network (BPNN), and mixed-effects NN models that combine the 2 to predict FPG levels.

View Article and Find Full Text PDF

Mixed ionic-electronic conductors have great potential as materials for energy storage applications. However, despite their promising properties, only a handful of metal-organic frameworks (MOFs) provide efficient pathways for both ion and electron transport. This work reports a proton-electron dual-conductive MOF based on tetrathiafulvalene(TTF)-phosphonate linkers and lanthanum ions.

View Article and Find Full Text PDF

Organic Ligand Exchange: The Chiral Structure-Property Regulation of Cuprous Halides.

Inorg Chem

December 2024

College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China.

The strategy of organic ligand exchange is proposed to tune the optical properties of organic-inorganic hybrid cuprous halides. In this work, the chiral ligand (S)-(-)-2,2'-bis(di--tolylphosphino)-1,1'-binaphthyl ((S)-Tol-BINAP) and achiral triphenylphosphine (PPh) are introduced into cuprous halides CuX-PPh-[(S)-Tol-BINAP] (X = Cl, Br, I) through organic ligand exchange. As a result, the mixed organic ligands can enhance second harmonic generation (SHG) and aggregation-induced emission (AIE) optical properties.

View Article and Find Full Text PDF

The development and application of a new method for quantifying total atmospheric sulfur in the Alberta Oil Sands.

J Air Waste Manag Assoc

December 2024

Air Quality Process Research Section, Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada.

Continuous ambient sulfur measurements are routinely conducted around the globe at numerous monitoring sites impacted by industrial sources such as gas and oil processing facilities, pulp and paper mills, smelters, sewage treatment facilities, or concentrated animal feeding operations, as well as natural sources such as volcanoes. Various jurisdictions have or plan to establish Air Ambient Quality Objectives/Guidelines/Standards for Total Reduced Sulfur (TRS) based on odor perception and/or health effects. A conventional TRS monitoring technique is widely used, but few studies have looked at potential biases in the resulting TRS measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!