Objectives: Aging can reduce the specificity with which memory episodes are represented as distributed patterns of brain activity. It remains unclear, however, whether repeated encoding and retrieval of stimuli modulate this decline. Memory repetition is thought to promote semanticization, a transformative process during which episodic memory becomes gradually decontextualized and abstracted. Because semantic memory is considered more resilient to aging than context-rich episodic memory, we hypothesized that repeated retrieval would affect cortical reinstatement differently in young versus older adults.
Methods: We reanalyzed data from young and older adults undergoing functional magnetic resonance imaging while repeatedly viewing and recalling short videos. We derived trial-unique multivariate measures of similarity between video-specific brain activity patterns elicited at perception and at recall, which we compared between age groups at each repetition.
Results: With repetition, memory representation became gradually more distinct from perception in young adults, as reinstatement specificity converged downward toward levels observed in the older group. In older adults, alternative representations that were item-specific but orthogonal to patterns elicited at perception became more salient with repetition.
Discussion: Repetition transformed dominant patterns of memory representation away and orthogonally from perception in young and older adults, respectively. Although distinct, both changes are consistent with repetition-induced semanticization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6748716 | PMC |
http://dx.doi.org/10.1093/geronb/gbz075 | DOI Listing |
Background: Availability of amyloid modifying therapies will dramatically increase the need for disclosure of Alzheimer's disease (AD) related genetic and/or biomarker test results. The 21st Century Cares Act requires the immediate return of most medical test results, including AD biomarkers. A shortage of genetic counselors and dementia specialists already exists, thus driving the need for scalable methods to responsibly communicate test results.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A., Philadelphia, PA, USA.
Background: The vicious cycle between depression and dementia increases the risk of Alzheimer's Disease (AD) pathogenesis and pathology. This study investigates therapeutic effectiveness versus side effects and the underlying mechanisms of intranasal dantrolene nanoparticles (IDNs) to treat depression behavior and memory loss in 5XFAD mice.
Method: 5XFAD and wild-type B6SJLF1/J mice were treated with IDNs (IDN, 5 mg/kg) in Ryanodex formulation for a duration of 12 weeks.
Background: The therapeutic management of dementia with Lewy bodies (LBD) is a challenge given the high sensitivity to drugs in this disease. This is particularly sensitive with regard to the management of parkinsonism. In particular, treatment of motor symptoms with levodopa or dopaminergic agonists poses a risk of worsening cognitive and behavioral symptoms.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Centre for Addiction and Mental Health, Toronto, ON, Canada.
Background: Dysregulated GABA/somatostatin (SST) signaling has been implicated in psychiatric and neurodegenerative disorders. The inhibition of excitatory neurons by SST+ interneurons, particularly through α5-containing GABAA receptors (α5-GABAAR), plays a crucial role in mitigating cognitive functions. Previous research demonstrated that an α5-positive allosteric modulator (α5-PAM) mitigates working memory deficits and reverses neuronal atrophy in aged mice.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Bioengineering, University of California, Los Angeles, CA, USA, Los Angeles, CA, USA.
Background: The initiation of amyloid plaque deposition signifies a crucial stage in Alzheimer's disease (AD) progression, which often coincides with the disruption of neural circuits and cognitive decline. While the role of excitatory-inhibitory balance is increasingly recognized in AD pathophysiology, targeted therapies to modulate this balance remain underexplored. This study investigates the effect of perampanel, a selective non-competitive AMPA receptor antagonist, in modulating neurophysiological changes in hAPP-J20 transgenic Alzheimer's mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!