We report a three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis of CDK2 inhibitors using fragment molecular orbital (FMO) calculations and partial least squares (PLS) regression. In our analysis, fragment binding energies of individual amino acids and fragment binding energy of a single ligand in a protein-ligand complex are evaluated by FMO calculations and used as descriptors in PLS regression to estimate biological activities of the ligands. The analysis was applied to the system of CDK2 protein and its inhibitors and the effectiveness of the method was tested. Application of the 3D-QSAR model demonstrated that it offered good predictive ability and was able to predict not only biological activity of ligands but also identify important amino acid residues which could be targeted in order to improve ligand activity.

Download full-text PDF

Source
http://dx.doi.org/10.1248/cpb.c18-00990DOI Listing

Publication Analysis

Top Keywords

fmo calculations
12
pls regression
12
3d-qsar analysis
8
analysis cdk2
8
cdk2 inhibitors
8
fragment binding
8
inhibitors fmo
4
calculations pls
4
regression report
4
report three-dimensional
4

Similar Publications

Exploring mimosamycin as a Janus kinase 2 inhibitor: A combined computational and experimental investigation.

Comput Biol Chem

January 2025

Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand. Electronic address:

Janus kinases (JAKs) are a family of intracellular tyrosine kinases that play a crucial role in signal transduction pathways. JAK2 has been implicated in the pathogenesis of leukemia, making it a promising target for research aimed at reducing the risk of this disease. This study examined the potential of mimosamycin as a JAK2 inhibitor using both in vitro and in silico approaches.

View Article and Find Full Text PDF

In this work, Density Functional Theory (DFT) on Gaussian 09 W software was utilized to investigate the phenylephrine (PE) molecule (C9H13NO2). Firstly, the optimized structure of the PE molecule was obtained using B3LYP/6-311 + G (d, p) and CAM-B3LYP/6-311 + G (d, p) basis sets. The electron charge density is shown in Mulliken atomic charge as a bar chart and also as a color-filled map in Molecular Electrostatic Potential (MEP).

View Article and Find Full Text PDF

The impact of halogen substitution quantities on the fluorescence intensity ratio of lanthanide Schiff base complexes.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Chemical Science and Technology, Kunming University, Kunming, Yunnan 650214, China. Electronic address:

The signal intensity ratio (SIR) is a crucial factor in advancing probe technology due to its direct impact on sensitivity and precision, particularly in applications such as medical imaging, environmental monitoring, and food safety testing. However, the development of high-SIR probes is challenged by complexities in fabrication, cost, and mechanical stability. In this study, we address these limitations by investigating the role of halogen atom substitutions in modulating the intermolecular binding energy and aggregation behavior of Ce-Salen Schiff base complexes.

View Article and Find Full Text PDF

One of the biggest challenges in food packaging is the creation of sustainable and eco-friendly packaging materials to shield foods from ultraviolet (UV) photochemical damage and to preserve the distinctive physical, chemical, and biological characteristics of foods throughout the supply chain. Accordingly, this study focuses on enhancing the UV shielding properties and biological activity of carboxylmethyl cellulose sodium (CMC) through modifications using zinc oxide (ZnO), copper oxide (CuO), and graphene oxide (GO) using the solution casting technique. The hybrid nanocomposites were characterized by fourier-transform infrared (FTIR) spectrophotometer, ultraviolet-visible (UV-Vis) spectrophotometer, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and x-ray diffraction (XRD).

View Article and Find Full Text PDF

Comprehensive study of Biginelli's compounds show antibacterial activity against Vibrio parahaemolyticus of two strains: In vitro and computational approaches.

Microb Pathog

February 2025

Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India. Electronic address:

This study addresses the critical challenges faced by global aquatic industries such as overfishing, habitat destruction, pollution, climate change, and unsustainable aquaculture practices. It focuses on developing effective solutions by synthesizing potent inhibitors against Vibrio parahaemolyticus of two strains namely: MTCC-451 (A) and Vp-S14 (B). Biginelli's compounds (B1-4) were identified as promising inhibitors with confirmed antibacterial activity through in silico and in vitro studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!