Zygotic genome activation (ZGA) begins after fertilization and is essential for establishing pluripotency and genome stability. However, it is unclear how ZGA genes prevent mitotic errors. Here we show that knockout of the ZGA gene Zscan5b, which encodes a SCAN domain with C2H2 zinc fingers, causes a high incidence of chromosomal abnormalities in embryonic stem cells (ESCs), and leads to the development of early-stage cancers. After irradiation, Zscan5b-deficient ESCs displayed significantly increased levels of γ-H2AX despite increased expression of the DNA repair genes Rad51l3 and Bard. Re-expression of Zscan5b reduced γ-H2AX content, implying a role for Zscan5b in DNA damage repair processes. A co-immunoprecipitation analysis showed that Zscan5b bound to the linker histone H1, suggesting that Zscan5b may protect chromosomal architecture. Our report demonstrates that the ZGA gene Zscan5b is involved in genomic integrity and acts to promote DNA damage repair and regulate chromatin dynamics during mitosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6565874PMC
http://dx.doi.org/10.1016/j.stemcr.2019.05.002DOI Listing

Publication Analysis

Top Keywords

dna damage
12
zga gene
8
gene zscan5b
8
damage repair
8
zscan5b
7
zscan5b deficiency
4
deficiency impairs
4
dna
4
impairs dna
4
damage response
4

Similar Publications

DNA damage triggers heritable alterations in DNA methylation patterns in Arabidopsis.

Mol Plant

January 2025

State Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Beijing Life Science Academy, Beijing 102299, China. Electronic address:

It has been hypothesized that DNA damage has the potential to induce DNA hypermethylation, contributing to carcinogenesis in mammals. However, there is no sufficient evidence to support that DNA damage can cause genome-wide DNA hypermethylation. Here, we demonstrated that DNA single-strand breaks with 3'-blocked ends (DNA 3'-blocks) can not only reinforce DNA methylation at normally methylated loci but also can induce DNA methylation at normally nonmethylated loci in plants.

View Article and Find Full Text PDF

Purpose: Prior sperm DNA fragmentation index (DFI) thresholds for diagnosing male infertility and predicting assisted reproduction technology (ART) outcomes fluctuated between 15 and 30%, with no agreed standard. This study aimed to evaluate the impact of the sperm DFI on early embryonic development during ART treatments and establish appropriate DFI cut-off values.

Methods: Retrospectively analyzed 913 couple's ART cycles from 2021 to 2022, encompassing 1,476 IVF and 295 ICSI cycles, following strict criteria.

View Article and Find Full Text PDF

Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.

View Article and Find Full Text PDF

The role of Box A of HMGB1 in producing γH2AX associated DNA breaks in lung cancer.

Sci Rep

January 2025

Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.

An ideal chemotherapeutic agent damages DNA, specifically in cancer cells, without harming normal cells. Recently, we used Box A of HMGB1 plasmid as molecular scissors to produce DNA gaps in normal cells. The DNA gap relieves DNA tension and increases DNA strength, preventing DNA double-strand breaks (DSBs).

View Article and Find Full Text PDF

CHD6 has poly(ADP-ribose)- and DNA-binding domains and regulates PARP1/2-trapping inhibitor sensitivity via abasic site repair.

Nat Commun

January 2025

Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.

To tolerate oxidative stress, cells enable DNA repair responses often sensitive to poly(ADP-ribose) (PAR) polymerase 1 and 2 (PARP1/2) inhibition-an intervention effective against cancers lacking BRCA1/2. Here, we demonstrate that mutating the CHD6 chromatin remodeler sensitizes cells to PARP1/2 inhibitors in a manner distinct from BRCA1, and that CHD6 recruitment to DNA damage requires cooperation between PAR- and DNA-binding domains essential for nucleosome sliding activity. CHD6 displays direct PAR-binding, interacts with PARP-1 and other PAR-associated proteins, and combined DNA- and PAR-binding loss eliminates CHD6 relocalization to DNA damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!