Diabetic nephropathy (DN) is a leading cause of renal failure worldwide. Unfortunately, the pathogenetic mechanism of DN is far from to be understood. Dual-specificity phosphatase 26 (DUSP26) is a member of the Dusp protein family, and is suggested to be involved in divers biological and pathological processes, such as cell growth, differentiation, inflammation and apoptosis. However, its role in the development of DN is still vague. In this study, we found that DUSP26 expression was increased in kidney of DN patients. Then, the wild type (DUSP26) and gene knockout (DUSP26) mice were used to further explore the effects of DUSP26 on DN development induced by streptozotocin (STZ). DUSP26 deficiency accelerated renal injury and dysfunction, as evidenced by the elevated glomerulosclerosis, reduced expression of Nephrin and promoted glomerular basement membrane thickness. In addition, STZ treatment resulted in reactive oxygen species (ROS) accumulation, HO overproduction and superoxide dismutase (SOD) reduction in renal cortex or glomeruli of mice. The ROS production caused the activation of mitogen-activated protein kinase (MAPKs) signaling in kidney glomeruli of STZ-induced mice. These in vivo pathological processes were further confirmed in the differentiated podocytes stimulated by glucose (GLU). Intriguingly, we found that STZ-induced DN as mentioned above was further accelerated by DUSP26 in mice following STZ injection. Moreover, STZ-induced fibrosis in kidney glomeruli of DN mice was markedly prolonged in DUSP26-knockout mice through potentiating transforming growth factor-β1 (TGF-β1) expression. More importantly, reducing ROS generation could significantly abolish DUSP26 knockdown-exacerbated TGF-β1 expression and MAPKs activation, thereby protecting podocytes from GLU-induced podocyte injury. Thus, DUSP26-regulated DN development was largely dependent on ROS generation. Taken together, we concluded that DUSP26 might be a promising therapeutic target for developing effective treatments against DN progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2019.05.032 | DOI Listing |
Free Radic Biol Med
November 2024
Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, NO. 246, Xuefu Road, Nangang District, Harbin, 150086, China. Electronic address:
Exp Cell Res
October 2024
Department of Urology, First Affiliated Hospital of Gannan Medical University, Gan Zhou, Jiang Xi, 341000, China; Jiangxi Stone Prevention Engineering Technology Research Center, Gan Zhou, Jiang Xi, 341000, China. Electronic address:
Prostate cancer (PCa) is threatening the health of millions of people, the pathological mechanism of prostate cancer has not been fully elaborated, and needs to be further explored. Here, we found that the expression of DUSP26 is dramatically suppressed, and a positive connection of its expression with PCa prognosis was also observed. In vitro, overexpression of DUSP26 significantly inhibited the proliferative, migrative, and invasive capacities of PC3 cells, DUSP26 silencing presented opposite results.
View Article and Find Full Text PDFToxicol Appl Pharmacol
June 2024
Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China. Electronic address:
Int Immunopharmacol
April 2023
Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
Dual-specificity phosphatase 26 (DUSP26) is linked to a broad range of human disorders as it affects numerous signaling cascades. However, the involvement of DUSP26 in ischemic stroke has not been explored. Here, we investigated DUSP26 as a key mediator of oxygen-glucose deprivation/reoxygenation (OGD/R)-associated neuronal injury, an in vitro model for investigating ischemic stroke.
View Article and Find Full Text PDFMol Biol Rep
November 2022
Department of Biochemistry, School of Veterinary Medicine, Bursa Uludag University, 16059, Bursa, Turkey.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!