Optimal lysosome function requires maintenance of an acidic pH maintained by proton pumps in combination with a counterion transporter such as the Cl/H exchanger, CLCN7 (ClC-7), encoded by CLCN7. The role of ClC-7 in maintaining lysosomal pH has been controversial. In this paper, we performed clinical and genetic evaluations of two children of different ethnicities. Both children had delayed myelination and development, organomegaly, and hypopigmentation, but neither had osteopetrosis. Whole-exome and -genome sequencing revealed a de novo c.2144A>G variant in CLCN7 in both affected children. This p.Tyr715Cys variant, located in the C-terminal domain of ClC-7, resulted in increased outward currents when it was heterologously expressed in Xenopus oocytes. Fibroblasts from probands displayed a lysosomal pH approximately 0.2 units lower than that of control cells, and treatment with chloroquine normalized the pH. Primary fibroblasts from both probands also exhibited markedly enlarged intracellular vacuoles; this finding was recapitulated by the overexpression of human p.Tyr715Cys CLCN7 in control fibroblasts, reflecting the dominant, gain-of-function nature of the variant. A mouse harboring the knock-in Clcn7 variant exhibited hypopigmentation, hepatomegaly resulting from abnormal storage, and enlarged vacuoles in cultured fibroblasts. Our results show that p.Tyr715Cys is a gain-of-function CLCN7 variant associated with developmental delay, organomegaly, and hypopigmentation resulting from lysosomal hyperacidity, abnormal storage, and enlarged intracellular vacuoles. Our data supports the hypothesis that the ClC-7 antiporter plays a critical role in maintaining lysosomal pH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6562152 | PMC |
http://dx.doi.org/10.1016/j.ajhg.2019.04.008 | DOI Listing |
Mol Genet Genomic Med
July 2024
Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan.
Background: We clinically and genetically evaluated a Taiwanese boy presenting with developmental delay, organomegaly, hypogammaglobulinemia and hypopigmentation without osteopetrosis. Whole-exome sequencing revealed a de novo gain-of-function variant, p.Tyr715Cys, in the C-terminal domain of ClC-7 encoded by CLCN7.
View Article and Find Full Text PDFIndian J Hematol Blood Transfus
July 2024
Department of Haematology, Christian Medical College, Vellore, Tamil Nadu 632517 India.
J Biol Chem
July 2024
Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany. Electronic address:
Together with its β-subunit OSTM1, ClC-7 performs 2Cl/H exchange across lysosomal membranes. Pathogenic variants in either gene cause lysosome-related pathologies, including osteopetrosis and lysosomal storage. CLCN7 variants can cause recessive or dominant disease.
View Article and Find Full Text PDFCalcif Tissue Int
July 2024
Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
Autosomal dominant osteopetrosis type 2 (ADO2) is a rare inherited bone disorder characterised by dense but brittle bones. It displays striking phenotypic variability, with the most severe symptoms, including blindness and bone marrow failure. Disease management largely relies on symptomatic treatment since there is no safe and effective treatment.
View Article and Find Full Text PDFJ Genet Eng Biotechnol
March 2024
Universidad Libre Cali Sectional, Colombia; Pediatric Research Group (GRINPED), Colombia; Neurogenetic and Metabolic Diseases Research Line, Colombia. Electronic address:
Background: Genome association studies have shown that gene-gene interactions or epistasis play a crucial role in identifying the etiology, prognosis, and treatment response of many complex diseases beyond their main effects. Skeletal dysplasias are a heterogeneous group of congenital bone and cartilage disorders with a genetic and gen-gen interaction etiology. The current classification of skeletal dysplasias distinguishes 461 diseases in 42 groups, and the incidence of all skeletal dysplasias is more than 1 in every 5000 newborns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!