Phase Separation as a Melting Pot for DNA Repeats.

Trends Genet

Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 661 University Avenue, Toronto, ONT, M5G 1M1, Canada; Canada Research Chairs Program, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ONT, M5S 1A8, Canada. Electronic address:

Published: August 2019

Genome expression and stability are dependent on biological processes that control repetitive DNA sequences and nuclear compartmentalization. The phase separation of macromolecules has recently emerged as a major player in the control of biological pathways. Here, we summarize recent studies that collectively reveal intersections between phase separation, repetitive DNA elements, and nuclear compartments. These intersections modulate fundamental processes, including gene expression, DNA repair, and cellular lifespan, in the context of health and diseases such as cancer and neurodegeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tig.2019.05.001DOI Listing

Publication Analysis

Top Keywords

phase separation
12
repetitive dna
8
separation melting
4
melting pot
4
dna
4
pot dna
4
dna repeats
4
repeats genome
4
genome expression
4
expression stability
4

Similar Publications

This study developed a W/O/W emulsion gel encapsulating proanthocyanidins from Aronia melanocarpa (Michx.) Elliott (APC) using polyglycerol ricinoleate (PGPR) as the lipophilic emulsifier and sodium caseinate (NaCN)-alginate (Alg) as the hydrophilic emulsifier. The optimal preparation process was established based on particle size, zeta potential, phase separation, centrifugal stability, and microscopic morphology: 4.

View Article and Find Full Text PDF

Tailoring molecular diffusion in core-shell zeolite imidazolate framework composites realizes efficient kinetic separation of xylene isomers.

Angew Chem Int Ed Engl

January 2025

Zhejiang University, Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, 866 Yuhangtang Road, Xihu District, hangzhou City, 310058, Hangzhou, CHINA.

The separation of xylene isomers is a critical and energy-intensive process in the petrochemical industry, primarily due to their closely similar molecular structures and boiling points. In this work, we report the synthesis and application of a novel core-shell zeolitic imidazolate framework (ZIF) composite, ZIF-65@ZIF-67, designed to significantly enhance the kinetic separation of xylene isomers through a synergistic "shell-gated diffusion and core-facilitated transport" strategy. The external ZIF-67 shell selectively restricts the diffusion of larger isomers (MX and OX), while the internal ZIF-65 core accelerates the diffusion of PX, thereby amplifying the diffusion differences among the isomers.

View Article and Find Full Text PDF

A novel pH-responsive full-bio-based surfactant (Ca-S) containing a dynamic covalent bond is synthesized using renewable cashew phenol, 5-chloro-2-furanaldehyde, and taurine. The structure of Ca-S is characterized by Fourier transform infrared spectroscopy (FTIR) and H nuclear magnetic resonance (NMR) analysis. Limonene containing oil-in-water (O/W) microemulsions are prepared on the basis of the Ca-S surfactant and are applied to the remediation of oil-contaminated soil under low-energy conditions at ambient temperature.

View Article and Find Full Text PDF

Many transcription factors (TFs) have been shown to bind to super-enhancers, forming transcriptional condensates to activate transcription in various cellular systems. However, the genomic and epigenomic determinants of phase-separated transcriptional condensate formation remain poorly understood. Questions regarding which TFs tend to associate with transcriptional condensates and what factors influence their association are largely unanswered.

View Article and Find Full Text PDF

Background: Incorporating β-carotene into food systems improves nutritional value by providing a natural source of vitamin A. However, maintaining its stability during processing and storage is a significant barrier for its bioavailability.

Results: This study investigated the utilization of banana rachis nanocellulose (BRNC) as a natural stabilizer in the formulation of Pickering nanoemulsion (PNE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!