Mammalian cells rely on complex and highly dynamic networks that respond to environmental stimuli and intracellular signals and maintain homeostasis. The use of synthetic orthogonal circuits for detection of dynamic behaviors has been limited by the remarkable stability of conventional reporters. While providing an appealing feature for signal amplification, the long half-life of reporters such as GFP is typically not ideal to measure transient signals and dynamic behaviors. This chapter explores the use of post-translational regulation for the design of input-dependent circuits that produce output signals with enhanced dynamic range and superior dynamic resolution of the input. Specifically, we report the use of the NanoDeg-a bifunctional system that mediates proteasomal degradation of a cellular target with high specificity and control over rate of decay-to achieve input-dependent depletion of a GFP reporter. Feedforward loop topologies were explored and compared to conventional reporters placed directly under control of the input to identify the ideal circuit architecture that allows placing both the GFP output and the GFP-specific NanoDeg under control of a common input and regulate GFP levels not only through input-dependent transcriptional activation but also input-dependent degradation. The circuit design was implemented experimentally by building a heat-sensitive reporter and exploring the design features that result in detection of the cell response with maximal output dynamic range and dynamic resolution of the heat shock. The method reported provides the design rules of a novel synthetic biology module that will be generally useful to build complex genetic networks for enhanced detection of highly dynamic behaviors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.mie.2019.02.013 | DOI Listing |
J Integr Neurosci
January 2025
Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA.
Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.
Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.
Viruses
December 2024
Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA.
Since the discovery of the Australia antigen, now known as the hepatitis B surface antigen (HBsAg), significant research has been conducted to elucidate its physical, chemical, structural, and functional properties. Subviral particles (SVPs) containing HBsAg are highly immunogenic, non-infectious entities that have not only revolutionized vaccine development but also provided critical insights into HBV immune evasion and viral assembly. Recent advances in cryo-electron microscopy (cryo-EM) have uncovered the heterogeneity and dynamic nature of spherical HBV SVPs, emphasizing the essential role of lipid-protein interactions in maintaining particle stability.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Facultad de Ingeniería, Universidad Autónoma de Baja California, Mexicali 21280, Mexico.
Lock-in amplifiers (LIAs) are critical tools in precision measurement, particularly for applications involving weak signals obscured by noise. Advances in signal processing algorithms and hardware synthesis have enabled accurate signal extraction, even in extremely noisy environments, making LIAs indispensable in sensor applications for healthcare, industry, and other services. For instance, the electrical impedance measurement of the human body, organs, tissues, and cells, known as bioelectrical impedance, is commonly used in biomedical and healthcare applications because it is non-invasive and relatively inexpensive.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
Goal: Current methodologies for assessing cerebral compliance using pressure sensor technologies are prone to errors and issues with inter- and intra-observer consistency. RAP, a metric for measuring intracranial compensatory reserve (and therefore compliance), holds promise. It is derived using the moving correlation between intracranial pressure (ICP) and the pulse amplitude of ICP (AMP).
View Article and Find Full Text PDFSensors (Basel)
January 2025
Faculty of Architecture and Civil Engineering, Karlsruhe University of Applied Sciences, 76133 Karlsruhe, Germany.
Engineers, geomorphologists, and ecologists acknowledge the need for temporally and spatially resolved measurements of sediment clogging (also known as colmation) in permeable gravel-bed rivers due to its adverse impacts on water and habitat quality. In this paper, we present a novel method for non-destructive, real-time measurements of pore-scale sediment deposition and monitoring of clogging by using wire-mesh sensors (WMSs) embedded in spheres, forming a smart gravel bed (GravelSens). The measuring principle is based on one-by-one voltage excitation of transmitter electrodes, followed by simultaneous measurements of the resulting current by receiver electrodes at each crossing measuring pores.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!