Multi-hump bright and dark solitons for the Schrödinger-Korteweg-de Vries coupled system.

Chaos

Departamento de Matemáticas, ESFM, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos Edificio 9, 07738 Cd. de México, Mexico.

Published: May 2019

The Hirota bilinear method is extended to find one- and two-hump exact bright and dark soliton solutions to a coupled system between the linear Schrödinger and Korteweg-de Vries (KdV) equations arising in the energy transfer problem along a cubic anharmonic crystal medium. The bilinear form associated to this system is found by imitating the well known bilinearizing transformations used in the standard nonlinear Schrödinger (NLS) and KdV equations. Proper finite exponential expansions in the transformed variables allow one to exhibit multihump soliton solutions as single entities resulting from the adjustment of appropriate dispersion relations between the wave parameters describing the profiles. It is found that such one- and two-hump solutions correspond to the one- and two-KdV solitons trapped by both the bright and dark-gray NLS solitons. Our two-hump bright and dark solutions represent novel solutions for the type of interactions and nonlinearities considered.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5092985DOI Listing

Publication Analysis

Top Keywords

bright dark
12
coupled system
8
one- two-hump
8
soliton solutions
8
kdv equations
8
solutions
5
multi-hump bright
4
dark solitons
4
solitons schrödinger-korteweg-de
4
schrödinger-korteweg-de vries
4

Similar Publications

Low indoor light in urban housing can disrupt health and wellbeing, especially in older adults who experience reduced light sensitivity and sleep/circadian disruptions with natural aging. While controlled studies suggest that enhancing indoor lighting may alleviate the negative effects of reduced light sensitivity, evidence for this to be effective in the real world is lacking. This study investigates the effects of two light conditions on actigraphic rest-activity rhythms and subjective sleep in healthy older adults (≥ 60 years) living at home.

View Article and Find Full Text PDF

Magnetic field-dependent magnetization of highly crystalline FeO magnetic nanoparticles has been carried out to understand surface canting structures at low and room temperatures. The exchange bias () values of ∼18 to 27 Oe at 300 K for three samples prepared from different precursors are observed; and a decrease in value is obtained when the samples are measured at 5 K. However, with a decrease in temperature, coercivity () increases.

View Article and Find Full Text PDF

In this study, the -model expansion method is showed to be useful for finding solitary wave solutions to the Klein-Gordon (KG) equation. We develop a variety of solutions, including Jacobi elliptic functions, hyperbolic forms, and trigonometric forms, so greatly enhancing the range of exact solutions attainable. The 2D, 3D, and contour plots clearly show different types of solitary waves, like bright, dark, singular, and periodic solitons.

View Article and Find Full Text PDF

Singlet fission in carotenoid dimers - the role of the exchange and dipolar interactions.

Phys Chem Chem Phys

January 2025

Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK.

A theory of singlet fission in carotenoid dimers is presented which aims to explain the mechanism behind the creation of two uncorrelated triplets. Following the excitation of a carotenoid chain "bright" B+u state, there is ultrafast internal conversion to the intrachain "dark" 1B-u triplet-pair state. This strongly exchange-coupled state evolves into a pair of triplets on separate chains and spin-decoheres to form a pair of single, unentangled triplets, corresponding to complete singlet fission.

View Article and Find Full Text PDF

Capturing the Elusive Curve-Crossing in Low-Lying States of Butadiene with Dressed TDDFT.

J Phys Chem Lett

January 2025

Department of Physics, Rutgers University, Newark 07102, New Jersey, United States.

A striking example of the need to accurately capture states of double-excitation character in molecules is seen in predicting photoinduced dynamics in small polyenes. Due to the coupling of electronic and nuclear motions, the dark 2Ag state, known to have double-excitation character, can be reached after an initial photoexcitation to the bright 1Bu state via crossings of their potential energy surfaces. However, the shapes of the surfaces are so poorly captured by most electronic structure methods, that the crossing is missed or substantially mis-located.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!