Background: Several 4,6-diarylpyrimidin-2-amine derivatives show anticancer properties. However, their mode of action is not fully characterized. To develop potent anticancer chemotherapeutic agents, we designed and synthesized 25 4,6-diphenylpyrimidin-2-amine derivatives containing a guanidine moiety.
Methods: Clonogenic long-term survival assays were performed to screen anticancer compounds. To derive the structural conditions showing good cytotoxicities against cancer cells, quantitative structure-activity relationships (QSAR) were calculated. Biological activities were determined by flow cytometry for cell cycle analysis and by immunoblot analysis for the detection of Aurora kinase A (AURKA) activity. Because 2-(2-Amino-6-(2,4-dimethoxyphenyl)pyrimidin-4-yl) phenol (derivative 12) selectively inhibited AURKA activity from the kinome assay, in silico docking experiments were performed to elucidate the molecular binding mode between derivative 12 and AURKA.
Results: The pharmacophores were derived based on the QSAR calculations. Derivative 12 inhibited AURKA activity and reduced phosphorylation of AURKA at Thr283 in HCT116 human colon cancer cells. Derivative 12 caused the accumulation of the G2/M phase of the cell cycle and triggered the cleavages of caspase-3, caspase -7, and poly(ADP-ribose) polymerase. The binding energies of 30 apo-AURKA - derivative 12 complexes obtained from in silico docking ranged from -16.72 to -11.63 kcal/mol.
Conclusions: Derivative 12 is an AURKA inhibitor, which reduces clonogenicity, arrests the cell cycle at the G2/M phase, and induces caspase-mediated apoptotic cell death in HCT116 human colon cancer cells. In silico docking demonstrated that derivative 12 binds to AURKA well. The structure-activity relationship calculations showed hydrophobic substituents and 1-naphthalenyl group at the R2 position increased the activity. The existence of an H-bond acceptor at C-2 of the R1 position increased the activity, too. Graphical abstract Derivative 12 inhibits Aurora kinase A activity and causes the G2/M phase arrest of the cell cycle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6592983 | PMC |
http://dx.doi.org/10.1007/s40199-019-00272-5 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Nano 2 Micro Material Design Lab, Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
Herein, fluorescent calcium carbonate nanoclusters encapsulated with methotrexate (Mtx) and surface functionalized with chitosan (25 nm) (@Calmat) have been developed for the imaging and treatment of triple-negative breast cancer (TNBC). These biocompatible, pH-sensitive nanoparticles demonstrate significant potential for targeted therapy and diagnostic applications. The efficacy of nanoparticles (NPs) was evaluated in MDA-MB-231 TNBC cell lines.
View Article and Find Full Text PDFPharmacol Rep
January 2025
Razi Drug Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran.
Melatonin, renowned for regulating sleep-wake cycles, also exhibits notable anti-aging properties for the skin. Synthesized in the pineal gland and various tissues including the skin, melatonin's efficacy arises from its capacity to combat oxidative stress and shield the skin from ultraviolet (UV)-induced damage. Moreover, it curbs melanin production, thereby potentially ameliorating hyperpigmentation.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
October 2023
Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
Optimizing central carbon metabolism (CCM) represents an attractive and challenging strategy to improve the biosynthesis of valuable chemicals due to the complex regulation of the CCM in yeast. In this study, we triggered the similar Warburg effect of cancer cells in yeast strains by introducing the human hypoxia-inducible factor-1 (HIF-1) complex, which regulated the expression of numerous enzymes involved in CCM and redirected the metabolic flux from glycolysis to tricarboxylic acid cycle. This redirection promoted the production of squalene to a 2.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, 486-0392, Japan.
Background: RAB11 is a small GTP-binding protein that regulates intracellular trafficking of recycling endosomes and is thereby involved in several neural functions. Highly similar RAB11 isoforms are encoded by RAB11A and RAB11B genes, and their pathogenic variants are associated with similar neurodevelopmental disorders, suggesting that RAB11A and RAB11B play similar and important roles in brain development. However, the detailed distribution patterns of these isoforms in various organs, including the brain, remain undetermined.
View Article and Find Full Text PDFCell Tissue Res
January 2025
Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation (QF), Hamad Bin Khalifa University (HBKU), Doha, Qatar.
Impaired insulin secretion contributes to the pathogenesis of type 1 diabetes mellitus through autoimmune destruction of pancreatic β-cells and the pathogenesis of severe forms of type 2 diabetes mellitus through β-cell dedifferentiation and other mechanisms. Replenishment of malfunctioning β-cells via islet transplantation has the potential to induce long-term glycemic control in the body. However, this treatment option cannot widely be implemented in clinical due to healthy islet donor shortage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!