This study was aimed at assessing the prenatal exposure to perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in a cohort of pregnant women living in Reus (Tarragona County, Catalonia, Spain). These chemicals were biomonitored in maternal plasma during the first trimester of pregnancy, at delivery, and in cord blood. The dietary exposure of PFOS and PFOA was estimated by using questionnaires of food frequency and water intake, as well as data on food levels previously reported in the same area. In addition, the exposure through air inhalation and indoor dust ingestion was also calculated. Finally, a physiologically-based pharmacokinetic (PBPK) model was applied in order to establish the prenatal exposure of the fetus/child and to adjust exposure assessment vs. biomonitoring results. Probabilistic calculations of fetal exposure were performed by forward internal dosimetry and Monte-Carlo simulation. Mean plasma levels of PFOA were 0.45, 0.13 and 0.12 ng/mL at the first trimester, at delivery and in cord plasma, while those of PFOS were 2.93, 2.21, and 1.17 ng/mL, respectively. Traces of PFOS were found in all samples in the trimester and at delivery, and almost in all cord blood samples. Transplacental transfers of PFOS and PFOA were estimated to be around 70% and 60%, respectively. A temporal decrease trend in plasma levels of PFOS and PFOA was noticed, when comparing current values with data obtained 10 years ago in the same area. In agreement with many other studies, dietary intake was the main route of exposure to PFOS and PFOA in our cohort of pregnant women. It is an important issue to establish the exposure in critical windows periods such as fetal development to perfluoroalkylated substances, but also to other endocrine disrupting chemicals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2019.05.040 | DOI Listing |
J Mass Spectrom
February 2025
FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA.
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a class of emerging contaminants that have been in use industrially since the 1940s. Their long-term and extensive commercial use has led to their ubiquitous presence in the environment. The ability to measure the bioconcentration and distribution of PFAS in the tissue of aquatic organisms helps elucidate the persistence of PFAS as well as environmental impacts.
View Article and Find Full Text PDFEnviron Epidemiol
February 2025
Department of Environmental and Occupational Health, Joe C. Wen School of Population and Public Health, University of California, Irvine, California.
Background: Few studies have investigated associations between per- and polyfluoroalkyl substances (PFAS) and childhood cancers. Detectable levels of PFAS in California water districts were reported in the Third Unregulated Contaminant Monitoring Rule for 2013-2015.
Methods: Geocoded residences at birth were linked to corresponding water district boundaries for 10,220 California-born children (aged 0-15 years) diagnosed with cancers (2000-2015) and 29,974 healthy controls.
Sci Total Environ
January 2025
LAR5 Laboratory, Department of Engineering, University of Perugia, Perugia, Italy. Electronic address:
Background: PFAS contamination is a global issue, affecting various food sources, especially animal-based products like eggs and dairy.
Objective: Collect scientific evidence of the presence of PFAS in diverse food and edible resources along with the related risks to human health, pursuing the following objectives: determination of the level of terrestrial food chain contamination; determination of the related human health risk.
Data Source: Scopus, PubMed, and Web of Science databases.
Toxicol Sci
January 2025
ToxStrategies LLC, Austin, Texas, USA.
Traditional approaches for quantitatively characterizing uncertainty in risk assessment require adaptation to accommodate increased reliance on observational (vs. experimental) studies in developing toxicity values. Herein, a case study with PFOA and PFOS and vaccine response explores approaches for qualitative and-where possible-quantitative assessments of uncertainty at each step in the toxicity value development process when using observational data, including review and appraisal of individual studies, candidate study selection, dose-response modeling, and application of uncertainty factors.
View Article and Find Full Text PDFJ Expo Sci Environ Epidemiol
January 2025
Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
Background: Exposure to per- and polyfluoroalkyl substances (PFAS) has been linked with various cancers. Assessment of PFAS in drinking water and cancers can help inform biomonitoring and prevention efforts.
Objective: To screen for incident cancer (2016-2021) and assess associations with PFAS contamination in drinking water in the US.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!