Objective: Suprarenal abdominal aortic coarctation (SAAC) alters flow and pressure patterns to the kidneys and is often associated with severe angiotensin-mediated hypertension refractory to drug therapy. SAAC is most often treated by a thoracoabdominal bypass (TAB) or patch aortoplasty (PA). It is currently unclear what effect these interventions have on renal flow and pressure waveforms. This study, using retrospective data from a patient with SAAC subjected to a TAB, undertook computational modeling to analyze aortorenal blood flow preoperatively as well as postoperatively after a variety of TAB and PA interventions.
Methods: Patient-specific anatomic models were constructed from preoperative computed tomography angiograms of a 9-year-old child with an isolated SAAC. Fluid-structure interaction (FSI) simulations of hemodynamics were performed to analyze preoperative renal flow and pressure waveforms. A parametric study was then performed to examine the hemodynamic impact of different bypass diameters and patch oversizing.
Results: Preoperative FSI results documented diastole-dominated renal perfusion with considerable high-frequency disturbances in blood flow and pressure. The postoperative TAB right and left kidney volumes increased by 58% and 79%, respectively, reflecting the increased renal artery blood flows calculated by the FSI analysis. Postoperative increases in systolic flow accompanied decreases in high-frequency disturbances, aortic pressure, and collateral flow after all surgical interventions. In general, lesser degrees of high-frequency disturbances followed PA interventions. High-frequency disturbances were eliminated with the 0% PA in contrast to the 30% and 50% PA oversizing and TAB interventions, in which these flow disturbances remained.
Conclusions: Both TAB and PA dramatically improved renal artery flow and pressure waveforms, although disturbed renal waveforms remained in many of the surgical scenarios. Importantly, only the 0% PA oversizing scenario eliminated all high-frequency disturbances, resulting in nearly normal aortorenal blood flow. The study also establishes the relevance of patient-specific computational modeling in planning interventions for the midaortic syndrome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8409007 | PMC |
http://dx.doi.org/10.1016/j.jvs.2019.02.063 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!