Centre of Pressure (CoP) location error is common when using kinematic and kinetic data to predict intersegmental forces and net joint moments during gait. Changes in peak moments due to CoP error have been reported in the literature. However, debate exists as to what levels of error are acceptable. The aim of this study was to examine the impact of CoP error on the kinetic profiles of children with typical development (TD) and children with cerebral palsy (CP) during gait. Three-dimensional kinematic and kinetic data were recorded and simulated CoP errors were applied at 3 mm, 6 mm, 9 mm, 12 mm increments in both positive and negative anteroposterior and mediolateral directions. Absolute differences in maximum kinetic parameters between increments were assessed in conjunction with changes in the Gait Deviation Index-Kinetic (GDI-Kinetic). Changes in GDI-Kinetic above 3.6 points were considered clinically significant. Maximum peak changes of up to 24.8% (CP) and 34.7% (TD) (sagittal plane) and up to 36.8% (CP) and 61.5% (TD) (coronal plane) were demonstrated at the knee. While absolute percentage differences were high at some error increments, GDI-Kinetic results suggested that such large percentage differences may still be clinically acceptable. Children with TD demonstrated clinically significant changes in GDI-Kinetic for CoP displacements of 9 mm and 12 mm, corresponding to 23% and 35% absolute differences in maximum moments. In contrast, the clinically significant threshold was not reached for children with CP that may be related to a slower walking speed. The findings of this study highlight the need for laboratories to consider the thresholds currently used for CoP error, which will help guide quality assurance procedures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2019.05.034DOI Listing

Publication Analysis

Top Keywords

cop error
12
centre pressure
8
cerebral palsy
8
kinematic kinetic
8
kinetic data
8
9 mm 12 mm
8
absolute differences
8
differences maximum
8
changes gdi-kinetic
8
percentage differences
8

Similar Publications

Chronic sedentary behavior can have a negative impact on the executive function (EF) of young people. While physical activity (PA) has been shown to improve this phenomenon, the effects of different types of PA on EF vary. In this study, we compared the effects of moderate-intensity continuous training (MICT) (60-70% HRmax, 30 min), body weight training (BWT) (2 sets tabata, 20 min), and mind-body exercise (MBE) (2 sets Yang style shadowboxing, 20 min) on EF in 59 sedentary youth (n = 59, age = 20.

View Article and Find Full Text PDF

Balance control has been evaluated using center of pressure (CoP) and center of mass (CoM). One of the most common approaches in stabilometry is enclosing ellipse to 95% of data using principal component analysis (PCA) or covariance methods. However, these methods have limitations, including normality assumption, lack of accuracy, and sample size influence.

View Article and Find Full Text PDF

Schizophrenia (SCZ), bipolar (BD) and major depression disorder (MDD) are severe psychiatric disorders that are challenging to treat, often leading to treatment resistance (TR). It is crucial to develop effective methods to identify and treat patients at risk of TR at an early stage in a personalized manner, considering their biological basis, their clinical and psychosocial characteristics. Effective translation of theoretical knowledge into clinical practice is essential for achieving this goal.

View Article and Find Full Text PDF

Background: Despite extensive knowledge of tuberculosis (TB) and its control, there remains a significant gap in understanding the comprehensive impact of the COVID-19 pandemic on TB incidence patterns. This study aims to explore the impact of COVID-19 on the pattern of pulmonary tuberculosis in China and examine the application of time series models in the analysis of these patterns, providing valuable insights for TB prevention and control.

Methods: We used pre-COVID-19 pulmonary tuberculosis (PTB) data (2007-2018) to fit SARIMA, Prophet, and LSTM models, assessing their ability to predict PTB incidence trends.

View Article and Find Full Text PDF

To investigate the impact of the positioning of plane-parallel ionization chambers in proton beams on the calculation of the chamber-specific factorand, hence, the beam quality correction factorkQ,Q0.Monte Carlo simulations were performed to calculate the chamber-specific factorin monoenergetic proton beams for six different plane-parallel ionization chambers while positioning the chambers with a) their reference point and b) their effective point of measurement accounting for the water equivalent thickness of the entrance window.For all ionization chamber models investigated in this study, the difference inbetween both positioning approaches was larger for steeper dose gradients and bigger differences between the geometrical thickness and water-equivalent thickness of the entrance window.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!