The sugarcane shoot borer Chilo infuscatellus (Snellen) is known for causing severe damage to sugarcane yield in China. Methods have been developed to control this pest, including Cry toxin pesticide and transgenic Bt plants. In order to investigate the molecular mechanism of the Cry toxin binding process and provide a basis for understanding the insect's resistance mechanism, we used a high throughput sequencing platform to perform a de novo transcriptome assembly across different larval developmental stages and analyzed Cry toxin receptors based on our assembled transcripts. We cloned twelve Cry toxin receptor genes including 1 cadherin (Cad), 7 aminopeptidase-Ns (APNs), 3 alkaline phosphatases (ALPs), and 1 ATP-binding cassette transporter subfamily C2 (ABCC2), and three of them with full length. The sublethal dosage of Cry1Ac toxin was applied to sugarcane shoot borer and identified some Cry toxin receptor genes that were significantly induced after 48 h of exposure. Furthermore, quantitative RT-PCR was conducted to detect the expression profiles of these genes. Our transcriptome sequence data provided a valuable molecular resource for further study and the identified Cry toxin receptor data gave insights for improved research into the mechanism of Bt resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pestbp.2019.03.023DOI Listing

Publication Analysis

Top Keywords

cry toxin
28
toxin receptor
16
receptor genes
12
sugarcane shoot
12
shoot borer
12
toxin
8
borer chilo
8
chilo infuscatellus
8
infuscatellus snellen
8
identified cry
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!