In this paper, we present a high-resolution, simple, and versatile imaging system for single-site resolved imaging of atoms in optical lattices. The system, which relies on an adaptable infinite conjugate two-lens design, has a numerical aperture of 0.52, which can in the ideal case be further extended to 0.57. It is optimized for imaging on the sodium D-line but allows us to tune the objective's diffraction limited performance between 400 nm and 1000 nm by changing the distance between the two lenses. Furthermore, the objective is designed to be integrated into a typical atomic physics vacuum apparatus where the operating distance can be large (>20 mm) and diffraction limited performance still needs to be achieved when imaging through thick vacuum windows (6 mm to 10 mm). Imaging gold nanoparticles, using a wavelength of 589 nm which corresponds to the D-line of sodium atoms, we measure diffraction limited performance and a resolution corresponding to an Airy radius of less than 0.7 µm, enabling potential single-site resolution in the commonly used 532 nm optical lattice spacing.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5086539DOI Listing

Publication Analysis

Top Keywords

diffraction limited
12
limited performance
12
single-site resolved
8
resolved imaging
8
imaging atoms
8
atoms optical
8
optical lattices
8
imaging
6
adaptable two-lens
4
two-lens high-resolution
4

Similar Publications

In the pinhole point diffraction interferometer (PPDI), proper alignment between the reflection spot of the tested component and the pinhole is critical to obtain accurate interferograms. At present, adjusting for tilt error requires manual manipulation, and defocus error cannot be corrected. These limitations impede the instrumentation process of PPDI.

View Article and Find Full Text PDF

Aerosols containing biological material (i.e., bioaerosols) impact public health by transporting toxins, allergens, and diseases and impact the climate by nucleating ice crystals and cloud droplets.

View Article and Find Full Text PDF

Polarization-Independent High-Q Phase Gradient Metasurfaces.

Nano Lett

January 2025

Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.

Dielectric metasurfaces have emerged as an unprecedented platform for precise wavefront manipulation at subwavelength scales with nearly zero loss. When aiming at dynamic applications such as AR/VR and LiDAR, high-quality factor (high-Q) phase gradient metasurfaces have emerged as a way to boost weak light-material interactions in flat-optical components. However, resonant features are naturally tied to polarization, limiting devices to operating on a single polarization state, which reduces the efficiency and adaptability of wave-shaping.

View Article and Find Full Text PDF

Antimicrobial properties of bimetallic-containing mesoporous bioglass against .

J Dent Sci

January 2025

Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.

Background/purpose: Various pulp-covering materials offer advantages in regenerative root canal treatment, but each has limitations, highlighting the need for more effective antibacterial strategies for pulp repair and regeneration. Mesoporous bioactive glasses (MBG) show significant biological activity, making them valuable in tissue/dental repair. Silver-incorporated MBG exhibits promising antibacterial effects against various bacteria; copper ions are crucial in regulating angiogenesis signals.

View Article and Find Full Text PDF

There is a growing understanding of the structural dynamics of biological molecules fueled by x-ray crystallography experiments. Time-resolved serial femtosecond crystallography (TR-SFX) with x-ray Free Electron Lasers allows the measurement of ultrafast structural changes in proteins. Nevertheless, this technique comes with some limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!