Site-resolved imaging of beryllium ion crystals in a high-optical-access Penning trap with inbore optomechanics.

Rev Sci Instrum

ARC Centre for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney, NSW 2006, Australia.

Published: May 2019

We present the design, construction, and characterization of an experimental system capable of supporting a broad class of quantum simulation experiments with hundreds of spin qubits using Be ions in a Penning trap. This article provides a detailed overview of the core optical and trapping subsystems and their integration. We begin with a description of a dual-trap design separating loading and experimental zones and associated vacuum infrastructure design. The experimental-zone trap electrodes are designed for wide-angle optical access (e.g., for lasers used to engineer spin-motional coupling across large ion crystals) while simultaneously providing a harmonic trapping potential. We describe a near-zero-loss liquid-cryogen-based superconducting magnet, employed in both trapping and establishing a quantization field for ion spin-states and equipped with a dual-stage remote-motor LN/LHe recondenser. Experimental measurements using a nuclear magnetic resonance (NMR) probe demonstrate part-per-million homogeneity over 7 mm-diameter cylindrical volume, with no discernible effect on the measured NMR linewidth from pulse-tube operation. Next, we describe a custom-engineered inbore optomechanical system which delivers ultraviolet (UV) laser light to the trap and supports multiple aligned optical objectives for topview and sideview imaging in the experimental trap region. We describe design choices including the use of nonmagnetic goniometers and translation stages for precision alignment. Furthermore, the optomechanical system integrates UV-compatible fiber optics which decouple the system's alignment from remote light sources. Using this system, we present site-resolved images of ion crystals and demonstrate the ability to realize both planar and three-dimensional ion arrays via control of rotating wall electrodes and radial laser beams. Looking to future work, we include interferometric vibration measurements demonstrating root-mean-square trap motion of ∼33 nm (∼117 nm) in the axial (transverse) direction; both values can be reduced when operating the magnet in free-running mode. The paper concludes with an outlook toward extensions of the experimental setup, areas for improvement, and future experimental studies.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5049506DOI Listing

Publication Analysis

Top Keywords

ion crystals
12
penning trap
8
optomechanical system
8
trap
6
experimental
6
ion
5
site-resolved imaging
4
imaging beryllium
4
beryllium ion
4
crystals high-optical-access
4

Similar Publications

Examples of long-range gene regulation in bacteria are rare and generally thought to involve DNA looping. Here, using a combination of biophysical approaches including X-ray crystallography and single-molecule analysis for the KorB-KorA system in Escherichia coli, we show that long-range gene silencing on the plasmid RK2, a source of multi-drug resistance across diverse Gram-negative bacteria, is achieved cooperatively by a DNA-sliding clamp, KorB, and a clamp-locking protein, KorA. We show that KorB is a CTPase clamp that can entrap and slide along DNA to reach distal target promoters up to 1.

View Article and Find Full Text PDF

Mn-Mn Dimers Induced Multimode Emitters in Mn-Activated AZn(PO) (A = K, Rb, and Cs) with Unique [ZnPO] Chains and [ZnO] Groups.

Inorg Chem

January 2025

State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.

Mn-doped luminescent materials play a significant role in a variety of fields, including modern lighting, displays, and imaging. Mn exhibits a broad and adjustable emission, hinging on the local environment of the crystal field and the interaction of the 3d electrons. However, it is still a challenge to realize the precise control of the emission of Mn ions due to site-prior occupation in a specific lattice.

View Article and Find Full Text PDF

Structural studies of hydrated rare earth nitrates within the stereoatomic model of crystal structures.

Acta Crystallogr B Struct Sci Cryst Eng Mater

February 2025

MIREA - Russian Technological University, 78 Vernadsky Avenue, Moscow, 119454, Russian Federation.

All crystal structures containing nitrate ions, water molecules and one of the rare earth (RE) metal atoms (La-Lu, Y, Sc) were extracted from the Inorganic Crystal Structure Database. The composition of the identified compounds is analyzed in terms of the number of coordinated and uncoordinated water molecules and nitrate ions. Among the resulting compounds, several isotypic and morphotropic series are observed.

View Article and Find Full Text PDF

Crystal Growth and Structural Analysis of Layered Lithium Titanium Sulfide.

Inorg Chem

January 2025

Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan.

Layered sulfide crystals are suitable hosts for lithium and sodium ions in batteries. In this study, new layered lithium titanium sulfide (LTS) crystals were grown in a sealed silica tube using a LiS self-flux at 800-950 °C. X-ray diffraction (XRD) analysis results indicated the formation of a new sulfide phase with higher symmetry in the Li-Ti-S system.

View Article and Find Full Text PDF

The influence of Eu concentration on the crystal structure and photoluminescence (PL) properties of Ca(PO):xEu (0.06 ≤ x ≤ 0.10) phosphors is systematically investigated using X-ray diffraction (XRD) Rietveld refinement, scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, UV-visible spectroscopy, and PL spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!