A ultralow noise magnetic field is essential for many branches of scientific research. Examples include experiments conducted on ultracold atoms, quantum simulations, and precision measurements. In ultracold atom experiments specifically, a bias magnetic field will often serve as a quantization axis and be applied for Zeeman splitting. As atomic states are usually sensitive to magnetic fields, a magnetic field characterized by ultralow noise as well as high stability is typically required for experimentation. For this study, a bias magnetic field is successfully stabilized at 14.5 G, with the root mean square value of the noise reduced to 18.5 μG (1.28 ppm) by placing μ-metal magnetic shields together with a dynamical feedback circuit. Long-time instability is also regulated consistently below 7 μG. The level of noise exhibited in the bias magnetic field is further confirmed by evaluating the coherence time of a Bose-Einstein condensate characterized by Rabi oscillation. It is concluded that this approach can be applied to other physical systems as well.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5087957 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!