The Dynamic Compression Sector (DCS) laser is a 100-J ultraviolet Nd:glass system designed and built by the Laboratory for Laser Energetics for experimental research at the DCS located at the Advanced Photon Source (Argonne National Laboratory). Its purpose is to serve as a shock driver to study materials under extreme dynamic pressures. It was designed to deposit energy within a uniformly illuminated 500-μm spot on target, with additional optics provided to implement spot sizes of 250 and 1000 μm. Designed after larger-scale glass lasers such as OMEGA and the National Ignition Facility, the laser consists of a fiber front end with interferometer-based pulse shaping, a Nd:glass regenerative amplifier, a four-pass rod amplifier, and a 15-cm glass disk amplifier, through which six passes are made in a bowtie geometry. The output is frequency tripled from 1053 to 351 nm by using a pair of type-II phase-matched KDP crystals, with a third to increase conversion bandwidth. The super-Gaussian spot in the far field is achieved with a distributed phase plate and a 1-m aspherical focusing lens. Beam smoothing is achieved by smoothing by spectral dispersion and polarization smoothing, resulting in a root-mean-square variation in intensity on target of ±8.7%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5088049 | DOI Listing |
J Funct Biomater
January 2025
Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland.
This study focuses on the development and evaluation of the OrthoNail hybrid intramedullary implant for lower limb lengthening in patients requiring significant skeletal reconstruction. The implant addresses the challenges in load-bearing during rehabilitation, providing a robust solution that is capable of supporting physiological loads. Mechanical tests, including axial compression, tension, torsion, and 3,4-point bending, determined the implant's load capacity and fatigue resistance, while finite element analysis assessed stress distributions in bone tissue and around screw holes during single-leg stance, with boundary conditions derived from Orthoload database data.
View Article and Find Full Text PDFGraphene aerogels with high surface areas, ultra-low densities, and thermal conductivities have been attracted a lot of attention in recent years. However, considerable difference in their deformation behavior and mechanical properties lead to their poor performance. The problem can be solved by preparing graphene aerogel of given morphology and by control the properties through the special structure of graphene cells.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 57001 Thermi, Greece.
The current research aims to analyze the shape and structural features of the eggs of the lepidoptera species sp. (Lepidoptera, Nympalidae) and develop design solutions through the implementation of a novel strategy of biomimetic design. Scanning electron microscopy (SEM) analysis of the chorion reveals a medial zone that forms an arachnoid grid resembling a ribbed dome with convex longitudinal ribs and concave transverse ring members.
View Article and Find Full Text PDFEntropy (Basel)
January 2025
Computational Neuroscience Group, Universitat Pompeu Fabra, 08005 Barcelona, Spain.
In the Kolmogorov Theory of Consciousness, algorithmic agents utilize inferred compressive models to track coarse-grained data produced by simplified world models, capturing regularities that structure subjective experience and guide action planning. Here, we study the dynamical aspects of this framework by examining how the requirement of tracking natural data drives the structural and dynamical properties of the agent. We first formalize the notion of a using the language of symmetry from group theory, specifically employing Lie pseudogroups to describe the continuous transformations that characterize invariance in natural data.
View Article and Find Full Text PDFBioengineering (Basel)
January 2025
Tissue Bioengineering Laboratory, Division of Graduate Studies and Research, Faculty of Dentistry, National Autonomous University of Mexico, Circuito Exterior s/n, University City, Coyoacán, Mexico City 04510, Mexico.
In the last thirty years, tissue engineering (TI) has emerged as an alternative method to regenerate tissues and organs and restore their function by implanting specific lineage cells, growth factors, or biomolecules functionalizing a matrix scaffold. Recently, several pathologies have led to bone loss or damage, such as malformations, bone resorption associated with benign or malignant tumors, periodontal disease, traumas, and others in which a discontinuity in tissue integrity is observed. Bone tissue is characterized by different stiffness, mechanical traction, and compression resistance as a function of the different compartments, which can influence susceptibility to injury or destruction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!