We have determined nonisothermal diffusive transport coefficients of a succinonitrile-(d)camphor mixture with a composition of c = 0.239 wt.-frac. (d)camphor at a temperature of 318.2 K, which is close to the eutectic point. The employed experimental techniques are optical beam deflection in a Soret cell and photon correlation spectroscopy. The diffusion coefficient is D = (1.43 ± 0.04) × 10 m s, the thermodiffusion coefficient is D = (2.00 ± 0.06) × 10 m s K, and the Soret coefficient is S = (1.40 ± 0.02) × 10 K. Camphor migrates toward the lower and succinonitrile migrates toward the higher temperatures. While the diffusion coefficient is in good agreement with the literature, the Soret coefficient has been determined for the first time. Our analysis shows that a significant concentration shift can be established in the liquid mixture in the presence of a temperature gradient. The mixture has a negative separation ratio, which leads to convective instabilities if heated from above.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5098879 | DOI Listing |
Sensors (Basel)
January 2025
School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China.
Real-time and accurate traffic forecasting aids in traffic planning and design and helps to alleviate congestion. Addressing the negative impacts of partial data loss in traffic forecasting, and the challenge of simultaneously capturing short-term fluctuations and long-term trends, this paper presents a traffic forecasting model, D-MGDCN-CLSTM, based on Multi-Graph Gated Dilated Convolution and Conv-LSTM. The model uses the DTWN algorithm to fill in missing data.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea.
Four quaternary Zintl phase thermoelectric (TE) materials belonging to the BaEuZnSb ( = 0.02(1), 0.04(1), 0.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Physics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 94901 Nitra, Slovakia.
Experimental studies have shown that osmosis could be one of the mechanisms of water transport in porous materials that act, to a certain extent, as semipermeable membranes. In this paper, an experimental apparatus and the corresponding model to measure and determine the osmotic efficiency, , of bulk porous materials are described. Both the apparatus and model to interpret water transport in samples are modifications of those of Sherwood and Craster.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Transport Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, 44249 Kaunas, Lithuania.
Cyclic failure problems in layered ductile iron are evident in a wide range of elements in transportation and mining equipment and depend on production technology and operating conditions. The aim of this study was to analyze the effect of residual stresses on the behavior of cyclic and static failure. The stress intensity factor, crack initiation, propagation patterns, static tension diagrams, and fracture behavior of compact tension (CT) specimens were determined.
View Article and Find Full Text PDFDiagnostics (Basel)
January 2025
Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, Germany.
: Hemoglobin (Hb) is a crucial parameter in perioperative care due to its essential role for oxygen transport and tissue oxygenation. Accurate Hb monitoring allows for timely interventions to address perioperative anemia and, thus, prevent morbidity and mortality. Traditional Hb measurements rely on invasive blood sampling, which significantly contributes to iatrogenic anemia and poses discomfort and increased infection risks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!