A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

HDL subclass proteomic analysis and functional implication of protein dynamic change during HDL maturation. | LitMetric

Recent clinical trials reported that increasing high-density lipoprotein-cholesterol (HDL-C) levels does not improve cardiovascular outcomes. We hypothesize that HDL proteome dynamics determine HDL cardioprotective functions. In this study, we characterized proteome profiles in HDL subclasses and established their functional connection. Mouse plasma was fractionized by fast protein liquid chromatography, examined for protein, cholesterial, phospholipid and trigliceride content. Small, medium and large (S/M/L)-HDL subclasseses were collected for proteomic analysis by mass spectrometry. Fifty-one HDL proteins (39 in S-HDL, 27 in M-HDL and 29 in L-HDL) were identified and grouped into 4 functional categories (lipid metabolism, immune response, coagulation, and others). Eleven HDL common proteins were identified in all HDL subclasses. Sixteen, 3 and 7 proteins were found only in S-HDL, M-HDL and L-HDL, respectively. We established HDL protein dynamic distribution in S/M/L-HDL and developed a model of protein composition change during HDL maturation. We found that cholesterol efflux and immune response are essential functions for all HDL particles, and amino acid metabolism is a special function of S-HDL, whereas anti-coagulation is special for M-HDL. Pon1 is recruited into M/L-HDL to provide its antioxidative function. ApoE is incorporated into L-HDL to optimize its cholesterial clearance function. Next, we acquired HDL proteome data from Pubmed and identified 12 replicated proteins in human and mouse HDL particle. Finally, we extracted 3 shared top moleccular pathways (LXR/RXR, FXR/RXR and acute phase response) for all HDL particles and 5 top disease/bio-functions differentially related to S/M/L-HDL subclasses, and presented one top net works for each HDL subclass. We conclude that beside their essencial functions of cholesterol efflux and immune response, HDL aquired antioxidative and cholesterol clearance functions by recruiting Pon1 and ApoE during HDL maturation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6541906PMC
http://dx.doi.org/10.1016/j.redox.2019.101222DOI Listing

Publication Analysis

Top Keywords

hdl
17
hdl maturation
12
immune response
12
hdl subclass
8
proteomic analysis
8
protein dynamic
8
change hdl
8
hdl proteome
8
hdl subclasses
8
proteins s-hdl
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!