Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Mutations in the FGD4 gene cause an autosomal recessive demyelinating peripheral neuropathy referred to as CMT4H, characterized by its onset in infancy or early-childhood and its slow progression.
Methods: The clinical and genetic status of two patients with CMT4H was studied, performing genetic testing with a panel of genes and analysing FGD4 mRNA expression by quantitative PCR.
Results: Two novel FGD4 variants (c.514delG and c.2211dupA) were identified in two mildly affected Spanish siblings with CMT4H, and with disease onset in late adolescence/adulthood (one of them remaining asymptomatic at 20). On examination, foot deformity was observed without weakness or sensory involvement, and in the muscles of the lower extremities magnetic resonance imaging showed no fat replacement. Further analysis of FGD4 expression in peripheral blood suggested that neither mutation affected splicing, nor did they affect the dosage of FGD4 mRNA (compared to a healthy control). It was predicted that each allele would produce a truncated protein, p.Ala172Glnfs*28 (c.514delG) and p.Ala738Serfs*5 (c.2211dupA), the latter containing all the functional domains of the native protein.
Conclusions: The conservation of functional domains in the proteins produced from the FGD4 gene of two patients with CMT4H, could explain both the milder phenotype and the later disease onset in these patients. These results expand the clinical and mutational spectrum of FGD4-related peripheral neuropathies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jns.2019.05.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!