A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

SIRT1 mediates the effect of stress on hypothalamic clock genes and food intake regulators in rainbow trout, Oncorhynchus mykiss. | LitMetric

SIRT1 mediates the effect of stress on hypothalamic clock genes and food intake regulators in rainbow trout, Oncorhynchus mykiss.

Comp Biochem Physiol A Mol Integr Physiol

Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Spain. Electronic address:

Published: September 2019

AI Article Synopsis

  • Stress negatively impacts animal welfare by affecting physiological functions like food intake and circadian rhythms.
  • Cortisol is a key player in stress-related changes, but other factors like SIRT1 also influence these processes, especially in the hypothalamus of rainbow trout.
  • High stocking density leads to decreased expression of clock genes and increased expression of food intake-related peptides, with SIRT1 playing a crucial role in mediating these stress effects; however, there's an interaction between SIRT1 and cortisol in response to stress that needs further investigation.

Article Abstract

Stress negatively affects a wide range of physiological and behavioural functions (circadian physiology and food intake, among others), thus compromising animal welfare. Cortisol mediates the effect of stress on food intake, but other mediators (such as sirtuins) may participate in that related to circadian physiology. We evaluated 1) the effect of stress on the day-night variation of hypothalamic clock genes and food intake regulators, 2) changes of mRNA abundance in cortisol biosynthesis at the head kidney, and 3) changes of glucocorticoid receptors in both tissues of rainbow trout, together with the involvement of SIRT1 in such effect. Trout receiving or not SIRT1 inhibitor (EX527) and subjected or not to stress by high stocking density (72 h), were sampled at day- (ZT10) and night-time (ZT18). Our results indicate that SIRT1 mediates the effect of stress on mRNA abundance of clock genes in trout hypothalamus, but it also influences those changes occurring on food intake-related peptides. High stocking density inhibits clock genes expression, but enhances that of food intake-related peptides. EX527 treatment prevents stress-related changes observed in clock genes, thus evidencing a key role played by SIRT1 in mediating this effect on trout circadian oscillators. On the other hand, EX527 treatment partially prevents changes of food intake-related peptides, indicating that an interaction between SIRT1 and other mediators (such as cortisol) exists during response to stress. In support of that, our results reveal that SIRT1 influences cortisol biosynthesis during stress. Whatever the case is, further research will help understanding the underlying mechanisms involved.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2019.05.021DOI Listing

Publication Analysis

Top Keywords

clock genes
20
food intake
16
mediates stress
12
food intake-related
12
intake-related peptides
12
sirt1 mediates
8
stress
8
hypothalamic clock
8
genes food
8
intake regulators
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!