A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pyrolytic Carbon-coated Cu-Fe Alloy Nanoparticles with High Catalytic Performance for Oxygen Electroreduction. | LitMetric

Pyrolytic Carbon-coated Cu-Fe Alloy Nanoparticles with High Catalytic Performance for Oxygen Electroreduction.

Chem Asian J

School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China.

Published: August 2019

Well-dispersed carbon-coated or nitrogen-doped carbon-coated copper-iron alloy nanoparticles (FeCu@C or FeCu@C-N) in carbon-based supports are obtained using a bimetallic metal-organic framework (Cu/Fe-MOF-74) or a mixture of Cu/Fe-MOF-74 and melamine as sacrificial templates and an active-component precursor by using a pyrolysis method. The investigation results attest formation of Cu-Fe alloy nanoparticles. The obtained FeCu@C catalyst exhibits a catalytic activity with a half-wave potential of 0.83 V for oxygen reduction reaction (ORR) in alkaline medium, comparable to that on commercial Pt/C catalyst (0.84 V). The catalytic activity of FeCu@C-N for ORR (E =0.87 V) outshines all reported analogues. The excellent performance of FeCu@C-N should be attributed to a change in the energy of the d-band center of Cu resulting from the formation of the copper-iron alloy, the interaction between alloy nanoparticles and supports and N-doping in the carbon matrix. Moreover, FeCu@C and FeCu@C-N show better electrochemical stability and methanol tolerance than commercial Pt/C and are expected to be widely used in practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.201900524DOI Listing

Publication Analysis

Top Keywords

alloy nanoparticles
16
cu-fe alloy
8
copper-iron alloy
8
nanoparticles fecu@c
8
fecu@c fecu@c-n
8
catalytic activity
8
commercial pt/c
8
alloy
5
pyrolytic carbon-coated
4
carbon-coated cu-fe
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!