Positioning the nucleus to a specific cellular location is a prerequisite for high-fidelity transmission of the genetic material to daughter cells. The cellular location of the nucleus just before its division is variable in budding yeast species which rely on a variety of mechanisms for nuclear division. Dynamic growth and shrinkage kinetics of microtubules (MTs) and forces exerted by the MT plus- and minus-end-directed motor proteins empower nuclear movement. Even though the overall process of nuclear migration is largely conserved across budding yeasts, in-depth molecular analyses of newly emerging model budding yeasts began to reveal striking differences from the paradigms that have been established based on the studies performed in the well-characterized budding yeast Saccharomyces cerevisiae. Here, we highlight the molecular players involved in differential nuclear migration in diverse budding yeasts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00294-019-01000-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!