Oligonucleotide drugs are experiencing greater success in the clinic, encouraging the initiation of new projects. Resources are insufficient to develop every potentially important project, and persuasive experimental data using cell lines close to disease target tissue is needed to prioritize candidates. Friedreich's ataxia (FRDA) is a devastating and currently incurable disease caused by insufficient expression of the enzyme frataxin (FXN). We have previously shown that synthetic nucleic acids can activate expression in human patient-derived fibroblast cells. We chose to further test these compounds in induced pluripotent stem cell-derived neuronal progenitor cells (iPSC-NPCs). Here we describe methods to deliver oligonucleotides and duplex RNAs into iPSC-NPCs using electroporation. Activation of expression is potent, easily reproducible, and potencies parallel those determined using patient-derived fibroblast cells. A duplex RNA and several antisense oligonucleotides (ASOs) with different combinations of 2'-methoxyethyl (2'-MOE), 2'-fluoro (2'-F), and constrained ethyl (cEt) were active, providing multiple starting points for further development and highlighting improved potency as an important goal for preclinical development. Our data support the conclusion that ASO-mediated activation of is a feasible approach for treating FRDA and that electroporation is a robust method for introducing ASOs to modulate gene expressions in neuronal cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6800520PMC
http://dx.doi.org/10.1261/rna.071290.119DOI Listing

Publication Analysis

Top Keywords

neuronal cells
8
duplex rna
8
rna antisense
8
patient-derived fibroblast
8
fibroblast cells
8
cells
5
efficient electroporation
4
electroporation neuronal
4
cells synthetic
4
synthetic oligonucleotides
4

Similar Publications

Artificial neurons with bio-inspired firing patterns have the potential to significantly improve the performance of neural network computing. The most significant component of an artificial neuron circuit is a large amount of energy consumption. Recent literature has proposed memristors as a promising option for synaptic implementation.

View Article and Find Full Text PDF

The outer retina (OR) is highly energy demanding. Impaired energy metabolism combined with high demands are expected to cause energy insufficiencies that make the OR susceptible to complex blinding diseases such as age-related macular degeneration (AMD). Here, anatomical, physiological and quantitative molecular data were used to calculate the ATP expenditure of the main energy-consuming processes in three cell types of the OR for the night and two different periods during the day.

View Article and Find Full Text PDF

Glioprotective Effects of Resveratrol Against Glutamate-Induced Cellular Dysfunction: The Role of Heme Oxygenase 1 Pathway.

Neurotox Res

January 2025

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Resveratrol, a natural polyphenol, has shown promising neuroprotective effects in several in vivo and in vitro experimental models. However, the mechanisms by which resveratrol mediates these effects are not fully understood. Glutamate is the major excitatory neurotransmitter in the brain; however, excessive extracellular glutamate levels can affect neural activity in several neurological diseases.

View Article and Find Full Text PDF

Seipin Deficiency Impairs Motor Coordination in Mice by Compromising Spinal Cord Myelination.

Neuromolecular Med

January 2025

Department of Anatomy, School of Basic Medical Sciences, Shanxi Medical University, No 56, Xinjian Nan Road, Taiyuan, 030001, Shanxi, China.

The integrity of the myelin sheath of the spinal cord (SC) is essential for motor coordination. Seipin is an endoplasmic reticulum transmembrane protein highly expressed in adipose tissue and motor neurons in the SC. It was reported Seipin deficiency induced lipid dysregulation and neurobehavioral deficits, but the underlying mechanism, especially in SC, remains to be elucidated.

View Article and Find Full Text PDF

Wnt7a-Cre is a commonly used for generating uterine epithelial conditional knockout mice, such as epiERα-/- (Esr1f/-Wnt7aCre/+) and epiPR-/- (Pgrf/-Wnt7aCre/+). We noticed that epiERα-/- females, but not epiPR-/- females, have prolonged plugging latency, which is the duration between continuous cohabitation and detection of the first vaginal plug (a sign of mating). Mating occurs in proestrus and/or estrus stages of the estrous cycle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!