A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Road Map for Translational Research on Artificial Intelligence in Medical Imaging: From the 2018 National Institutes of Health/RSNA/ACR/The Academy Workshop. | LitMetric

Advances in machine learning in medical imaging are occurring at a rapid pace in research laboratories both at academic institutions and in industry. Important artificial intelligence (AI) tools for diagnostic imaging include algorithms for disease detection and classification, image optimization, radiation reduction, and workflow enhancement. Although advances in foundational research are occurring rapidly, translation to routine clinical practice has been slower. In August 2018, the National Institutes of Health assembled multiple relevant stakeholders at a public meeting to discuss the current state of knowledge, infrastructure gaps, and challenges to wider implementation. The conclusions of that meeting are summarized in two publications that identify and prioritize initiatives to accelerate foundational and translational research in AI for medical imaging. This publication summarizes key priorities for translational research developed at the workshop including: (1) creating structured AI use cases, defining and highlighting clinical challenges potentially solvable by AI; (2) establishing methods to encourage data sharing for training and testing AI algorithms to promote generalizability to widespread clinical practice and mitigate unintended bias; (3) establishing tools for validation and performance monitoring of AI algorithms to facilitate regulatory approval; and (4) developing standards and common data elements for seamless integration of AI tools into existing clinical workflows. An important goal of the resulting road map is to grow an ecosystem, facilitated by professional societies, industry, and government agencies, that will allow robust collaborations between practicing clinicians and AI researchers to advance foundational and translational research relevant to medical imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jacr.2019.04.014DOI Listing

Publication Analysis

Top Keywords

medical imaging
16
road map
8
artificial intelligence
8
2018 national
8
national institutes
8
clinical practice
8
foundational translational
8
imaging
5
translational
4
map translational
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!