Eight male volunteers had rest and exercise measurement to determine the mechanisms of oxygen transport during a 40-day chamber decompression simulating high-altitude exposure equivalent to the summit of Mt Everest. Five subjects completing the study decreased their maximum oxygen uptake by 72%. During maximal or near-maximal exercise, arterial PCO2 fell as low as 8 mm Hg, defending the alveolar PO2 and confirming marked hyperventilation. Alveolar-arterial diffusion did not improve and V/Q worsened. Cardiac function was unimpaired. Circulatory oxygen transport resembled that at sea level. The decrease in mixed venous PO2 was not enough to preserve fractional oxygen utilization "on the summit." The PO2 gradients from atmosphere to alveolus, alveolus to arterial blood, arterial to venous blood, and from venous (capillary) blood to mitochondria all decreased. However, hyperventilation appeared to be the primary adaptation that defended the maximum oxygen uptake.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0196-0644(87)80746-1 | DOI Listing |
J Am Chem Soc
January 2025
Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
The side reactions accompanying the charging and discharging process, as well as the difficulty in decomposing the discharge product lithium peroxide, have been important issues in the research field of lithium-oxygen batteries for a long time. Here, single atom Ta supported by CoO hollow sphere was designed and synthesized as a cathode catalyst. The single atom Ta forms an electron transport channel through the Ta-O-Co structure to stabilize octahedral Co sites, forming strong adsorption with reaction intermediates and ultimately forming a film-like lithium peroxide that is highly dispersed.
View Article and Find Full Text PDFJ Exp Biol
January 2025
Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
Peripheral arterial chemoreceptors monitor the levels of arterial blood gases and adjust ventilation and perfusion to meet metabolic demands. These chemoreceptors are present in all vertebrates studied to date but have not been described fully in reptiles other than turtles. The goals of this study were to 1) identify functional chemosensory areas in the South American rattlesnake (Crotalus durissus) 2) determine the neurochemical content of putative chemosensory cells in these areas and 3) determine the role each area plays in ventilatory and cardiovascular control.
View Article and Find Full Text PDFLimnology (Tokyo)
July 2024
Department of Geological and Environmental Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105 Beer Sheva, Israel.
Unlabelled: The redox conditions in the littoral limnic sediments may be affected by the penetration of plant roots which provide channels for oxygen transport into the sediment while decomposition of the dead roots results in consumption of oxygen. The goal of this work was to study the impact of environmental parameters including penetration of roots of L. into the sediments on cycling of the redox-sensitive elements in Lake Kinneret.
View Article and Find Full Text PDFAging Adv
December 2024
Department of Integrative Genomics and Epidemiology, Meharry Medical College, Nashville, TN, USA.
Estrogen hormones are primarily associated with their role as female sex hormones responsible for primary and secondary sexual development. Estrogen receptors are known to undergo age-dependent decreases due to age-related changes in hormone production. In the mitochondria, estrogen functions by reducing the production of reactive oxygen species in the electron transport chain, inhibiting apoptosis, and regulating mitochondrial DNA content.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
National Energy Metal Resources and New Materials Key Laboratory, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China.
Rechargeable Zn-air batteries (RZABs) are poised for industrial application, yet they require low-cost, high-performance catalysts that efficiently facilitate both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). The pivotal challenge lies in designing multimetal active sites and optimizing the carbon skeleton structure to modulate catalyst activity. In this study, we introduce a novel hierarchical porous carbon-supported FeCoNi bifunctional catalyst, synthesized via a spray combustion method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!