In this study, porous carbon (PC) was prepared from pyrolysis of sodium carboxymethyl cellulose (CMC) and was further treated with KMnO to fabricate manganese oxides coated PC (MnO/PC). SEM, BET, XPS and FTIR technology were employed to explain their structures. Batch adsorption experiments for Pb(II) were carried out to estimate their adsorption performance. Results showed that manganese oxides coating onto the PC caused the decrease of microporous surface area and microporous volume, while the oxygen content increased greatly. Both PC and MnO/PC exhibit excellent absorption performance for Pb(II) and their maximum adsorption capacity were 0.6054 and 1.2297 mmol g (about 125.44 and 254.79 mg g), respectively. The adsorption process of Pb(II) was quick and pH-dependent. The absorption kinetic and thermodynamic process were fitted well with pseudo-second-order model and Langmuir isotherm model, respectively, suggesting that Pb(II) adsorption onto the sorbents were a chemical process and monolayer adsorption were reached.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2019.04.058 | DOI Listing |
RSC Adv
January 2025
CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu 610041 China.
A novel multilayer nanoflake structure of manganese oxide/graphene oxide (γ-MnO/GO) was fabricated a simple template-free chemical precipitation method, and the modified carbon felt (CF) electrode with γ-MnO/GO composite was used as an anode material for microbial fuel cells (MFCs). The characterization results revealed that the γ-MnO/GO composite has a novel multilayer nanoflake structure and offers a large specific surface area for bacterial adhesion. The electrochemical analyses demonstrated that the γ-MnO/GO composite exhibited excellent electrocatalytic activity and enhanced the electrochemical reaction rate and reduced the electron transfer resistance, consequently facilitating extracellular electron transfer (EET) between the anode and bacteria.
View Article and Find Full Text PDFChemSusChem
January 2025
Yonsei University, School of Integrated Technology (SIT), Yonsei Institute of Convergence Technology (YICT), 85 Songdogwahak-ro, 21983, Yeonsu-gu, KOREA, REPUBLIC OF.
Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) based electrolyte is a promising alternative to liquid electrolytes in lithium metal batteries. However, its commercial application is limited by high crystallinity and low Li+ ion conductivity. In this study, we synthesized a fluorinated Li-based metal-organic framework (Li-MOF-F) and used it as a filler to address these limitations.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Chongzuo Key Laboratory of Comprehensive Utilization Technology of Manganese Resources, Guangxi Key Laboratory for High-value Utilization of Manganese Resources, College of Chemistry and Biological Engineering, Guangxi Minzu Normal University, Chongzuo 532200, Guangxi, PR China. Electronic address:
O3-type NaNiFeMnO (NFM) is considered as a promising cathode material for sodium-ion batteries (SIBs) due to its high theoretical energy density and low production cost. However, the applications of NFM are restricted owing to detrimental interfacial side reactions and phase evolution during cycling. Herein, a three-in-one modification strategy, including NaMoO coating, surface reconstruction from layered to spinel phase, and Mo doping, is proposed to design NFM.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China. Electronic address:
Groundwater is widely threatened by hazardous manganese and ammonia. In present study, a novel gravity-driven fixed-bed ceramic membrane filtration (GDFBCM) with critical PAC-MnOx-ceramsite filters was built to address these issues. Static ceramsite filters in GDCM significantly increased membrane flux from 11 L/m·h to 18 L/m·h on the 50th day of filtration.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, TX, USA. Electronic address:
Manganese superoxide dismutase (MnSOD/SOD2) is an essential mitochondrial enzyme that detoxifies superoxide radicals generated during oxidative respiration. MnSOD/SOD2 lysine 68 acetylation (K68-Ac) is an important post-translational modification (PTM) that regulates enzymatic activity, responding to nutrient status or oxidative stress, and elevated levels have been associated with human illness. To determine the in vivo role of MnSOD-K68 in the heart, we used a whole-body non-acetylation mimic mutant (MnSOD) knock-in mouse.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!