Microfluidic platforms use controlled fluid flows to provide physiologically relevant biochemical and biophysical cues to cultured cells in a well-defined and reproducible manner. Undisturbed flows are critical in these systems, and air bubbles entering microfluidic channels can lead to device delamination or cell damage. To prevent bubble entry into microfluidic channels, we report a low-cost, Rapidly Integrated Debubbler (RID) module that is simple to fabricate, inexpensive, and easily combined with existing experimental systems. We demonstrate successful removal of air bubbles spanning three orders of magnitude with a maximum removal rate (dV/dt) = 1.5 mL min, at flow rates required to apply physiological wall shear stress (1-200 dyne cm) to mammalian cells cultured in microfluidic channels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6632054 | PMC |
http://dx.doi.org/10.3390/mi10060360 | DOI Listing |
AAPS PharmSciTech
January 2025
School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
Paeoniflorin is a natural pharmaceutical ingredient with a widely biological activity. However, as a hydrophilic drug, the problem of low transdermal rate limits its clinical application. To overcome this shortage, LUVs were used as biocompatible carriers of paeoniflorin in this study.
View Article and Find Full Text PDFLangmuir
January 2025
Mechanical Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
Electrorheological fluids are suspensions that are characterized by a strong functional dependence of their constitutive behavior on the local electric field. While such fluids are known to be promising in different applications of microfluidics including electrokinetic flows, their capabilities of controlling ion transport and preferential solute segregation in confined fluidic systems remain to be explored. In this work, we bring out the unique role of electrorheological fluids in orchestrating the selective enrichment and depletion of charged species in variable area microfluidic channels.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea.
Recent studies have reported that the cause and progression of many diseases are closely related to complex and diverse gene regulation involving multiple microRNAs (miRNAs). However, most existing methods for miRNA detection typically deal with one sample at a time, which limits the achievement of high diagnostic accuracy for diseases associated with multiple gene dysregulations. Herein, we develop a liquid flow-based microfluidic optical assay for the simple and reliable detection of two different target miRNAs simultaneously at room temperature without any enzymatic reactions.
View Article and Find Full Text PDFRandom lasers (RLs) with a simple structure and low-cost properties have been recognized as an ideal analytical platform and are still challenging for liquid detecting, remaining beset for low sensitivity, complicated operation, and large analyte consumption. Here, inspired by a microfluidic sensor, a microtubule structured random laser for multifunctional sensing is demonstrated. The random laser is achieved resorting to a curly PMMA film with gain and scatterers embedded in it.
View Article and Find Full Text PDFMetasurfaces offer a powerful tool to realize label-free and highly sensitive Raman spectroscopy. Embedding metasurfaces into microfluidic channels is promising to establish a new characterizing platform for microfluids. In this Letter, we present a highly stable method for improving the Raman scattering intensity of biological microfluids by using a microfluidic chip embedded with a plasmonic metasurface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!