Previous research has shown the varied effect of earthworms on soil carbon dynamics. We carried out a 180-day incubation experiment with earthworms and maize residue additions under conventional tillage (CT) and no tillage (NT) system conditions to quantify the earthworm effect in the black soil of northeastern China. Earthworms did not affect soil CO emissions, while residue addition significantly increased such emissions. The effects of earthworms on dissolved organic carbon (DOC) and microbial biomass carbon (MBC) gradually weakened with time in CT with and without residue addition, but gradually increased with time in NT with residue addition. In the CT system, earthworms accelerated the soil organic carbon (SOC) mineralization; and the newly added residue decomposed into SOC. In the NT system, earthworms accelerated the decomposition of native residues increasing the SOC content; this increase in decomposition rates by earthworms was greater than the inhibitory effect imposed by the addition of the new residue. Earthworms and residues combine to play a single role in CT and NT. This result will help in the understanding of the role of earthworms and residue in SOC dynamics, and in the development of management strategies to improve SOC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6603604PMC
http://dx.doi.org/10.3390/ijerph16111908DOI Listing

Publication Analysis

Top Keywords

organic carbon
12
residue addition
12
earthworms
9
soil organic
8
time residue
8
system earthworms
8
earthworms accelerated
8
residue
7
soil
5
carbon
5

Similar Publications

Catalytic Asymmetric Dehydrogenative Si-H/X-H Coupling toward Si-Stereogenic Silanes.

Acc Chem Res

January 2025

Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

ConspectusChiral organosilicon compounds bearing a Si-stereogenic center have attracted increasing attention in various scientific communities and appear to be a topic of high current relevance in modern organic chemistry, given their versatile utility as chiral building blocks, chiral reagents, chiral auxiliaries, and chiral catalysts. Historically, access to these non-natural Si-stereogenic silanes mainly relies on resolution, whereas their asymmetric synthetic methods dramatically lagged compared to their carbon counterparts. Over the past two decades, transition-metal-catalyzed desymmetrization of prochiral organosilanes has emerged as an effective tool for the synthesis of enantioenriched Si-stereogenic silanes.

View Article and Find Full Text PDF

The hydrolysis rates of many organic chemicals are accelerated under alkaline conditions by the presence of hydroxide (HO), which is typically assumed to be the predominant species contributing to base-catalyzed hydrolysis in both natural waters and laboratory buffers used in standard protocols. In this study, we demonstrated that weak bases (e.g.

View Article and Find Full Text PDF

The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are considered to be the most important processes in metal-air batteries and regenerative fuel cell devices. Metal-organic polymers are attracting interest as promising precursors of advanced metal/carbon electrocatalysts because of their hierarchical porous structure along with the integrated metal-carbon framework. We developed carbon-coated CNTs with Ni/Fe and Cu/Fe as active sites.

View Article and Find Full Text PDF

Advancing efficiency in deep-blue OLEDs: Exploring a machine learning-driven multiresonance TADF molecular design.

Sci Adv

January 2025

Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan.

The pursuit of boron-based organic compounds with multiresonance (MR)-induced thermally activated delayed fluorescence (TADF) is propelled by their potential as narrowband blue emitters for wide-gamut displays. Although boron-doped polycyclic aromatic hydrocarbons in MR compounds share common structural features, their molecular design traditionally involves iterative approaches with repeated attempts until success. To address this, we implemented machine learning algorithms to establish quantitative structure-property relationship models, predicting key optoelectronic characteristics, such as full width at half maximum (FWHM) and main peak wavelength, for deep-blue MR candidates.

View Article and Find Full Text PDF

This study investigates the synthesis, characterization, and functional properties of well-aligned zinc oxide (ZnO) nanowires (NWs) obtained by a two-step hydrothermal method. ZnO NWs were grown on silicon substrates precoated with a ZnO seed layer. The growth process was conducted at 90 °C for different durations (2, 3, and 4 h) to examine the time-dependent evolution of the nanowire properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!