Evaluating the potential use of a dairy industry residue to induce denitrification in polluted water bodies: A flow-through experiment.

J Environ Manage

Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica I Geomicrobiologia, Departament de Mineralogia, Petrologia I Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), Barcelona, Spain; Serra Húnter Fellowship, Generalitat de Catalunya, Spain.

Published: September 2019

Improving the effectiveness and economics of strategies to remediate groundwater nitrate pollution is a matter of concern. In this context, the addition of whey into aquifers could provide a feasible solution to attenuate nitrate contamination by inducing heterotrophic denitrification, while recycling an industry residue. Before its application, the efficacy of the treatment must be studied at laboratory-scale to optimize the application strategy in order to avoid the generation of harmful intermediate compounds. To do this, a flow-through denitrification experiment using whey as organic C source was performed, and different C/N ratios and injection periodicities were tested. The collected samples were analyzed to determine the chemical and isotopic composition of N and C compounds. The results proved that whey could promote denitrification. Nitrate was completely removed when using either a 3.0 or 2.0 C/N ratio. However, daily injection with C/N ratios from 1.25 to 1.5 seemed advantageous, since this strategy decreased nitrate concentration to values below the threshold for water consumption while avoiding nitrite accumulation and whey release with the outflow. The isotopic results confirmed that nitrate attenuation was due to denitrification and that the production of DIC was related to bacterial whey oxidation. Furthermore, the isotopic data suggested that when denitrification was not complete, the outflow could present a mix of denitrified and nondenitrified water. The calculated isotopic fractionation values (εN and εO) might be applied in the future to quantify the efficiency of the bioremediation treatments by whey application at field-scale.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2019.03.086DOI Listing

Publication Analysis

Top Keywords

industry residue
8
c/n ratios
8
denitrification
6
whey
6
nitrate
5
evaluating potential
4
potential dairy
4
dairy industry
4
residue induce
4
induce denitrification
4

Similar Publications

In the manufacturing of some sectors, such as marble and brick, certain byproducts, such as sludge, powder, and pieces containing valuable chemical compounds, emerge. Some concrete plants utilize these byproducts as mineralogical additives in Turkey. The objective of the experimental study is to ascertain whether the incorporation of waste from the marble and brick industries, in powder form, into cement manufacturing as a mineralogical additive or substitute is a viable option.

View Article and Find Full Text PDF

This study introduces a novel landfill cover material, employing lake sediment as a substrate, stabilised with fly ash, slag, desulfurisation gypsum and construction waste. The mechanical properties, including shear strength parameters, unconfined compressive strength, hydraulic conductivity, volumetric shrinkage, and water content, of the solidified sludge were evaluated. The microscopic mechanism of the solidified sludge were investigated through XRD, FTIR, and SEM-EDS techniques.

View Article and Find Full Text PDF

Correction for 'A comparative review on the mitigation of metronidazole residues in aqueous media using various physico-chemical technologies' by Moosa Es'haghi , , 2024, , 7294-7310, https://doi.org/10.1039/D4AY01502A.

View Article and Find Full Text PDF

Insect farming: A bioeconomy-based opportunity to revalorize plastic wastes.

Environ Sci Ecotechnol

January 2025

Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.

Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management.

View Article and Find Full Text PDF

Members of the old yellow enzyme (OYE) family utilize a flavin mononucleotide cofactor to catalyze the asymmetric reduction of activated alkenes. The 2-enoate reductase (2-ER) subfamily are of particular industrial relevance as they can reduce α/β alkenes near electron-withdrawing groups. While the broader OYE family is being extensively explored for biocatalytic applications, oxygen sensitivity and poor expression yields associated with the presence of an Fe/S cluster in 2-ERs have hampered their characterization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!