A patient with IgG kappa myeloma had markedly elevated serum phosphate concentrations but no clinical features of hyperphosphataemia. The hyperphosphataemia was due to a high phosphate per protein unit than normal IgG.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.0954-6820.1987.tb09934.x | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
The glucose-6-phosphatase (G6Pase) is an integral membrane protein that catalyzes the hydrolysis of glucose-6-phosphate (G6P) in the endoplasmic reticulum lumen and plays a vital role in glucose homeostasis. Dysregulation or genetic mutations of G6Pase are associated with diabetes and glycogen storage disease 1a (GSD-1a). Studies have characterized the biophysical and biochemical properties of G6Pase; however, the structure and substrate recognition mechanism of G6Pase remain unclear.
View Article and Find Full Text PDFProtein Eng Des Sel
January 2025
Pfizer Rare Disease Research Unit, 610 Main Street, Cambridge, MA 02139, United States.
Pompe disease is a tissue glycogen disorder caused by genetic insufficiency of the GAA enzyme. GAA enzyme replacement therapies for Pompe disease have been limited by poor lysosomal trafficking of the recombinant GAA molecule through the native mannose-6-phosphate-mediated pathway. Here, we describe the successful rational engineering of a chimeric GAA enzyme that utilizes the binding affinity of a modified IGF-II moiety to its native receptor to bypass the mannose-6-phosphate-mediated lysosomal trafficking pathway, conferring a significant increase in cellular uptake of the GAA enzyme.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Plant Nutriton, Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China.
Plant internal phosphorus (P) recycling is a complex process, which is vital for improving plant P use efficiency. However, the mechanisms underlying phosphate (Pi) release from internal organic-P form remains to be deciphered in crops. Here, we functionally characterised a Pi-starvation responsive purple acid phosphatase (PAP), GmPAP23 in soybean (Glycine max).
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, People's Republic of China.
Background: DNA methylation (DNAm) has been shown in multiple studies to be associated with the estimated glomerular filtration rate (eGFR). However, studies focusing on Chinese populations are lacking. We conducted an epigenome-wide association study to investigate the association between DNAm and eGFR in Chinese monozygotic twins.
View Article and Find Full Text PDFBr J Pharmacol
January 2025
Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
Background And Purpose: Perivascular adipose tissues (PVATs) play a critical role in modulating vascular homeostasis and protecting against cardiovascular dysfunction-mediated blood pressure dysregulation. We demonstrated that the activating transcription factor-3 (Atf3) gene in the PVAT is crucial for improving vascular wall tension abnormalities; however, its protective mechanism remains unclear. Herein, we aim to determine whether ATF3 regulates PVAT-derived relaxing factor (PVDRF) biosynthesis and if its secretion contributes to vasorelaxation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!