The successful isolation and characterization of a dioxirane species in 1988 opened up one of the most attractive methods for the efficient oxidation of simple and/or structurally complex molecules. Dioxirane today rank among the most powerful tools in organic chemistry, with numerous applications in commercially important processes. They were quickly recognized as efficient oxygen transfer agents, especially for epoxidations and for a wide range of O-insertion reactions into C-H bonds. Dioxirane possess catalytic activity and appear as highly (chemo-, regio-, and stereo-) selective oxidants, despite their reactivity under mild and strictly neutral conditions being controlled by a combination of steric and electronic factors. In this review, we discuss some of the most recent and significant developments in the selective homogeneous and heterogeneous oxyfunctionalization of non-activated C-H bonds in hydrocarbons of natural and non-natural targets by using isolated dioxirane or, more generally, by using the ketones (i.e., the dioxirane precursors) as organocatalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201901687 | DOI Listing |
ACS Synth Biol
January 2025
Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
Cell-free synthetic biology incorporates purified components and/or crude cell extracts to carry out metabolic and genetic programs. While protein synthesis has historically been the primary focus, more metabolism researchers are now turning toward cell-free systems either to prototype pathways for cellular implementation or to design new-to-nature reaction networks that incorporate environmentally relevant substrates or new energy sources. The ability to design, build, and test enzyme combinations has accelerated efforts to understand metabolic bottlenecks and engineer high-yielding pathways.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
January 2025
College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
Transaminases are a class of enzymes that catalyze the transfer of amino between amino acids and keto acids, playing an important role in the biosynthesis of organic amines and the corresponding derivatives. However, natural enzymes often have low catalytic efficiency against non-natural substrates, which limits their widespread applications. Enzyme engineering serves as an effective approach to improve the catalytic properties and thereby expand the application scope of transaminases.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
January 2025
School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China.
As the chip of synthetic biology, enzymes play a vital role in the bio-manufacturing industry. The development of diverse functional enzymes can provide a rich toolbox for the development of synthetic biology. This article reports the construction of an artificial enzyme with the introduction of a non-natural cofactor.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
ConspectusChiral organosilicon compounds bearing a Si-stereogenic center have attracted increasing attention in various scientific communities and appear to be a topic of high current relevance in modern organic chemistry, given their versatile utility as chiral building blocks, chiral reagents, chiral auxiliaries, and chiral catalysts. Historically, access to these non-natural Si-stereogenic silanes mainly relies on resolution, whereas their asymmetric synthetic methods dramatically lagged compared to their carbon counterparts. Over the past two decades, transition-metal-catalyzed desymmetrization of prochiral organosilanes has emerged as an effective tool for the synthesis of enantioenriched Si-stereogenic silanes.
View Article and Find Full Text PDFJ Org Chem
January 2025
School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India.
Aldolases, especially 2-deoxyribose-5-phosphate aldolase (DERA) enzymes, have been widely employed to access key chiral precursors for various active pharmaceutical ingredients (APIs). This has been enabled by expanding their substrate scope toward non-natural acceptors and donors via protein engineering. In this study, we endeavored to broaden the acceptor substrate scope of DERA from sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!