Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Demethoxycurcumin (DMC) is a safe and natural food-coloring additive, as well as an agent with several therapeutic properties. However, extensive glucuronidation in vivo has resulted in its poor bioavailability. In this study, we aimed to investigate the formation of DMC-O-glucuronides by uridine 5'-diphospho-glucuronosyltransferase 1A1 (UGT1A1) and its transport by breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs) in HeLa cells stably transfected with UGT1A1 (named HeLa1A1 cells). The chemical inhibitors Ko143 (a selective BCRP inhibitor) and MK571 (a pan-MRP inhibitor) both induced an obvious decrease in the excretion rate of DMC-O-glucuronides and a significant increase in intracellular DMC-O-glucuronide concentrations. Furthermore, BCRP knock-down resulted in a marked reduction in the level of excreted DMC-O-glucuronides (maximal 55.6%), whereas MRP1 and MRP4 silencing significantly decreased the levels of excreted DMC-O-glucuronides (a maximum of 42.9% for MRP1 and a maximum of 29.9% for MRP3), respectively. In contrast, neither the levels of excreted DMC-O-glucuronides nor the accumulation of DMC-O-glucuronides were significantly altered in the MRP4 knock-down HeLa cells. The BCRP, MRP1 and MRP3 transporters were identified as the most important contributors to the excretion of DMC-O-glucuronides. These results may significantly contribute to improving our understanding of mechanisms underlying the cellular disposition of DMC via UGT-mediated metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544300 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217695 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!