Humans have a lower risk of death from myocardial infarction (MI) living at low elevations (<2500 m), which are not high enough to induce hypoxia. Both chronic hypoxia pre-MI, achieved by altitude simulation >5000 m, and intermittent hypobaric hypoxia post-MI can reduce MI size in rodents, and it is believed that hypoxia is the key stimulus. To explore mechanisms beyond hypoxia we studied whether altitude simulation <2500 m would also be associated with reduced infarct size. We performed left-anterior descending artery ligation on C57BL6 mice. Control mice (n = 12) recovered at 754 mmHg (atmospheric pressure, control), and treatment group mice (n = 13) were placed in a hypobaric chamber to recover 3-hours daily at 714 mmHg for 1 week. Echocardiographic evaluation of left ventricular function was performed on Day 0, Day 1 and Day 8. Intermittent hypobaric treatment was associated with a 14.2±5.3% improvement in ejection fraction for treatment group mice (p<0.01 vs. Day 1), with no change observed in control mice. Cardiac output, stroke volume, and infarct size were also improved in treated mice, but no changes were observed in HIF-1 activation or neovascularization. Next, we studied the acute hemodynamic effects of low altitude stimulation in intact mice breathing 100% oxygen using left ventricular catheterization and recording of pressure-volume loops. Acute reductions in barometric pressure from 754 mmHg to 714 mmHg and 674 mmHg were associated with reduced systemic vascular resistance, increased stroke volume and cardiac output, and no change in blood pressure or heart rate. Ex-vivo vascular function was studied using murine mesenteric artery segments. Acute reductions in barometric pressure were associated with greater vascular distensibility. We conclude that intermittent hypobaric treatment using simulated altitudes <2500 m reduces infarct size and increases ventricular function post-MI, and that these changes are related to altered arterial function and not hypoxia-associated neovascularization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6544215PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0215814PLOS

Publication Analysis

Top Keywords

altitude simulation
8
myocardial infarction
8
low altitude
4
hypoxia
4
simulation hypoxia
4
hypoxia improves
4
improves left
4
left ventricular
4
ventricular function
4
function myocardial
4

Similar Publications

This paper considers the problem of flying a UAV along a given trajectory at speeds close to the speed of sound and above. A novel pitch channel control system is presented using the example of a trajectory with rapid and large changes in flight height. The control system uses a proportional-integral-differential (PID) controller, whose gains were first determined using the Ziegler-Nichols II method.

View Article and Find Full Text PDF

Predicting the Potential Distribution of (Coleoptera: Scarabaeidae) Under Climate Change.

Insects

December 2024

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.

(Jordan, 1898), a beetle species of ecological and ornamental significance, is predominantly found in southern China. With limited dispersal ability, it is classified as a Class 2 protected species in China. In this study, the widely employed maximum entropy (MaxEnt) model and the ensemble Biomod2 model were applied to simulate habitat suitability in China under current environmental conditions based on available distribution data and multiple environmental variables.

View Article and Find Full Text PDF

Natural disasters can severely disrupt conventional communication systems, hampering relief efforts. High-altitude tethered balloon base stations (HATBBSs) are a promising solution to communication disruptions, providing wide communication coverage in disaster-stricken areas. However, a single HATBBS is insufficient for large disaster zones, and limited resources may restrict the number and energy capacity of available base stations.

View Article and Find Full Text PDF

Background: In low-and-middle income countries, national representative household surveys such as the Demographic and Health Surveys (DHS) and the Malaria Indicator Surveys (MIS) are routinely carried out to assess the malaria risk and the coverage of related interventions. A two-stage sampling design was used to identify clusters and households within each cluster. To ensure confidentiality, DHS made the data available after jittering (displacement) of the geographical coordinates of the clusters, shifting their original locations within a radius of 10 km.

View Article and Find Full Text PDF

Visualized neural network-based vibration control for pigeon-like flexible flapping wings.

ISA Trans

January 2025

School of Artificial Intelligence, Anhui University, Hefei 230601, China. Electronic address:

This study investigates pigeon-like flexible flapping wings, which are known for their low energy consumption, high flexibility, and lightweight design. However, such flexible flapping wing systems are prone to deformation and vibration during flight, leading to performance degradation. It is thus necessary to design a control method to effectively manage the vibration of flexible wings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!