Water-Soluble Cellulose Derivatives as Suitable Matrices for Multifunctional Materials.

Biomacromolecules

BCMaterials, Basque Center for Materials, Applications and Nanostructures , UPV/EHU Science Park , 48940 Leioa , Spain.

Published: July 2019

This work reports on a simple and environmentally benign route to prepare freestanding magnetic films based on cellulose derivatives through the combination of cobalt ferrite (CoFeO) nanoparticles with methyl cellulose (MC), hydroxypropyl cellulose (HPC), and sodium carboxymethyl cellulose (NaCMC). Nanoparticles are able to "shield" hydrogen bonding interactions between polysaccharide chains and lower the viscosity of water-dissolved MC, HPC, and NaCMC, allowing an easy film fabrication. Crack-free films with homogeneously dispersed nanoparticles having concentrations up to 50 wt % are fabricated by mechanical agitation followed by doctor blade casting. All of the nanocomposite films keep a substantial level of flexibility with elongation at break exceeding 5%. Halpin-Tsai equations serve to provide further insights on the character of matrix-CoFeO interfaces. Magnetization saturation increases almost linearly with cobalt ferrite concentration up to a maximum value of ∼24-27 emu g for nanocomposites containing 50 wt % of nanoparticles. The dielectric response of the films demonstrates a strong dependence on both the functional groups attached to the main cellulose chain and the ferrite nanoparticle content. The renewable character of the hosting matrices, together with the fabrication methods that solely uses water as a solvent, the decrease of the viscosity with the inclusion of fillers, particularly suitable for printable materials, and the resulting magnetic performance provide novel avenues for the replacement of traditional magnetoactive composites based on petroleum-derived polymers and avoiding the use of toxic solvents.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.9b00574DOI Listing

Publication Analysis

Top Keywords

cellulose derivatives
8
cobalt ferrite
8
cellulose
5
water-soluble cellulose
4
derivatives suitable
4
suitable matrices
4
matrices multifunctional
4
multifunctional materials
4
materials work
4
work reports
4

Similar Publications

A 3D Cell-Culture System That Uses Nano-Fibrillated Bacterial Cellulose to Prepare a Spherical Formulation of Culture Cells.

Biol Pharm Bull

January 2025

Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan.

A 3-dimensional (3D) cell culture is now being actively pursued to accomplish the in vivo-like cellular morphology and biological functions in cell culture. We recently obtained nano-fibrillated bacterial cellulose (NFBC). In this study, we developed a novel NFBC-based 3D cell-culture system, the OnGel method, and the Suspension method.

View Article and Find Full Text PDF

The increasing reliance on electronic devices has created a pressing demand for high-performance and sustainable electromagnetic interference shielding materials. While conventional materials, such as metals and carbon-based composites, offer excellent shielding capabilities, they are hindered by high costs, environmental concerns, and limitations in scalability. Polysaccharide-based materials, including cellulose, chitosan, and alginate, represent a promising alternative due to their biodegradability, renewability, and versatility.

View Article and Find Full Text PDF

Engineering the biosynthetic pathway of bacterial cellulose in rice to improve the performance of straw-derived paper.

Plant Commun

January 2025

Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding,China, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms ,Ministry of Agriculture and Rural Affairs, China. Electronic address:

View Article and Find Full Text PDF

Formulation Design of Orally Disintegrating Film Using Two Cellulose Derivatives as a Blend Polymer.

Pharmaceutics

January 2025

Laboratory of Advanced Pharmaceutical Process Engineering, Gifu Pharmaceutical University, 5-6-1 Mitahora-Higashi, Gifu 502-8585, Japan.

: Orally disintegrating film (ODF) is prepared using water-soluble polymers as film-forming agents. To improve mechanical and disintegration properties, some polymers need to be blended with others. This study aimed to investigate the utility of hydroxypropyl cellulose (HPC) and hydroxypropyl methyl cellulose (HPMC) as blend film-forming components for ODFs.

View Article and Find Full Text PDF

Environmental pollution, stemming from the disposal of contaminants, poses severe threats to ecosystems and human health. The emergence of a new class of pollutants, termed emerging contaminants (ECs), in soil, water, and air has raised global concerns, aligning with the UN 2030 Agenda's Sustainable Development Goals. Aerogels, three-dimensional structures with high porosity and low density, offer promise in addressing this issue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!