Mitochondrial cytochrome c is a highly conserved protein in eukaryotes. Certain functions of cytochrome c have been tuned during evolution. For instance, the intrinsic peroxidase activity of human cytochrome c is much lower than that of the yeast counterpart. Structural studies on K72A yeast iso-1-cytochrome c [McClelland, L. J., et al. (2014) Proc. Natl. Acad. Sci. USA, 111, 6648-6653] revealed that residues 81 and 83 in Ω-loop D (residues 70-85) may be gatekeeper residues for the peroxidase activity linked to intrinsic apoptosis. Amino acids at both positions evolve to more sterically demanding amino acids. We hypothesized that residues 81 and 83 evolved such that steric constraints at these positions tune down the peroxidase activity of human cytochrome c. To test this hypothesis, I81A and V83G variants of human cytochrome c were prepared. Our results show that the I81A substitution significantly influences the thermodynamics and kinetics of access to alternate conformers of human cytochrome c, while the V83G substitution has a more modest effect on these properties. The I81A variant also shows a significant enhancement in peroxidase activity, particularly below pH 7, whereas the V83G variant has a similar peroxidase activity to wild-type human cytochrome c. However, neither variant increases the peroxidase activity of human cytochrome c to the level of yeast iso-1-cytochrome c, indicating that other substructures of cytochrome c are also involved in tuning the intrinsic peroxidase activity of mitochondrial cytochrome c.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.9b00295 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!