A palladium(II)-catalyzed 1,1-difunctionalization of unactivated terminal and internal alkenes via addition of two nucleophiles was developed using a cationic palladium(II) complex. The palladacycle generated in situ as a result of a regioselective addition of a nucleophile to the alkene can readily undergo regioselective β-hydride elimination and migratory insertion with a cationic palladium catalyst. The resulting η-π-allyl palladium(II) complex is the key intermediate that reacts with a second nucleophile to furnish the desired 1,1-difunctionalization of the alkene. Under the optimized reaction conditions, a wide range of indoles and anilines add to alkene units of 3-butenoic or 4-pentenoic acid derivatives to afford the synthetically useful γ,γ- or δ,δ-difunctionalized products with excellent regiocontrol. Furthermore, by employing internal hydroxyl or acid groups and external carbon nucleophiles, this transformation enables unsymmetric 1,1-difunctionalization to forge challenging and important oxo quaternary carbon centers. Combining experiments and DFT calculations on the mechanism of the reaction is investigated in detail.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.9b04142DOI Listing

Publication Analysis

Top Keywords

11-difunctionalization unactivated
8
cationic palladium
8
palladiumii complex
8
site-selective 11-difunctionalization
4
unactivated alkenes
4
alkenes enabled
4
enabled cationic
4
palladium catalysis
4
catalysis palladiumii-catalyzed
4
palladiumii-catalyzed 11-difunctionalization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!