Algae biomass is formed by an extremely complex set of metabolites, and its molecular characterization has been very challenging. We report the characterization of microalgae extracts via traveling wave ion mobility-mass spectrometry (TWIM-MS) by two different analysis strategies. First, the extracts were analyzed by direct infusion electrospray ionization (ESI) with no previous chromatographic separation (DI-ESI-TWIM-MS). Second, the samples were screened for metabolites and lipids using an untargeted high-throughput method that employs ultrahigh-performance liquid chromatography (UHPLC) using data-independent analysis (DIA) - MS (UHPLC-HDMS). Sixteen different microalgae biomasses were evaluated by both strategies. DI-ESI-TWIM-MS was able, via distinct drift times, to set apart different classes of metabolites, with the differences in the profiles of each microalga readily evident. With the UHPLC-HDMS approach, 1251 different compounds were putatively annotated across 16 samples with 210 classified as lipids. From the normalized abundance for each annotated compound category, a detailed profiling in terms of metabolites, lipids, and lipid classes of each sample was performed. The reported workflow represents a powerful tool to determine the most suitable biotechnological applications for a given alga type and may allow for real-time monitoring of the algae composition distribution as a function of growth conditions, feedstocks, and the like. The determination of collision cross section results in improved confidence in the identification of triacylglycerols in samples, highly applicable to biofuels production. The two analysis strategies explored in this work offer powerful tools for the biomass industry by aiding in the identification of ideal strains and culture conditions for a specific application, saving analysis time and facilitating identification of a large number of constituents at once.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.9b02172 | DOI Listing |
Int J Mol Sci
January 2025
Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
Dansyl labeling is a widely used approach for enhancing the detection of small molecules by UV spectroscopy and mass spectrometry. It has been successfully applied to identify and quantify a variety of biological and environmental specimens. Despite clear advantages, the dansylation reaction has found very few applications in the study of proteins.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
MTA-ELTE Lendület (Momentum) Ion Mobility Mass Spectrometry Research Group, ELTE Eötvös Loránd University, Institute of Chemistry, Department of Analytical Chemistry, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary.
Cyclic ion mobility-mass spectrometry (cIM-MS) is a powerful technique for separating and identifying isomeric mixtures of compounds. When coupled with chromatography, cIM-MS creates a multidimensional separation system, with high resolving power and peak capacity. In this study, we report the cyclic ion mobility separation and high-resolution mass spectrometry identification of four regioisomers of a Sugammadex-related impurity, abbreviated as Di-OH-SGM.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Omics Technologies, Cellzome a GSK company, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
Data-independent acquisition (DIA) on ion mobility mass spectrometers enables deep proteome coverage and high data completeness in large-scale proteomics studies. For advanced acquisition schemes such as parallel accumulation serial fragmentation-based DIA (diaPASEF) stability of ion mobility (1/K) over time is crucial for consistent data quality. We found that minor changes in environmental air pressure systematically affect the vacuum pressure in the TIMS analyzer, causing ion mobility shifts.
View Article and Find Full Text PDFFood Res Int
February 2025
Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Science, Nanjing 210014, China. Electronic address:
Broad beans, a seasonal leguminous vegetable renowned for their distinctive flavor and high-quality plant protein, present unique opportunities for culinary and nutritional applications. To better understand the impact of various blanching processes on their characteristics, we employed headspace gas chromatography-ion mobility mass spectrometry (HS-GC-IMS) and biochemical tests to evaluate changes in color, volatile compound content, and levels of antioxidant-related substances following different blanching treatments. Our findings revealed that microwave blanching significantly influenced the a* metric and antioxidant capacity of broad beans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!