Introduction: Reliable preoperative identification of patients at high risk for early postoperative complications occurring within 24 h (EPC) of intracranial tumor surgery can improve patient safety and postoperative management. Statistical analysis using machine learning algorithms may generate models that predict EPC better than conventional statistical methods.
Objective: To train such a model and to assess its predictive ability.
Methods: This cohort study included patients from an ongoing prospective patient registry at a single tertiary care center with an intracranial tumor that underwent elective neurosurgery between June 2015 and May 2017. EPC were categorized based on the Clavien-Dindo classification score. Conventional statistical methods and different machine learning algorithms were used to predict EPC using preoperatively available patient, clinical, and surgery-related variables. The performance of each model was derived from examining classification performance metrics on an out-of-sample test dataset.
Results: EPC occurred in 174 (26%) of 668 patients included in the analysis. Gradient boosting machine learning algorithms provided the model best predicting the probability of an EPC. The model scored an accuracy of 0.70 (confidence interval [CI] 0.59-0.79) with an area under the curve (AUC) of 0.73 and a sensitivity and specificity of 0.80 (CI 0.58-0.91) and 0.67 (CI 0.53-0.77) on the test set. The conventional statistical model showed inferior predictive power (test set: accuracy: 0.59 (CI 0.47-0.71); AUC: 0.64; sensitivity: 0.76 (CI 0.64-0.85); specificity: 0.53 (CI 0.41-0.64)).
Conclusion: Using gradient boosting machine learning algorithms, it was possible to create a prediction model superior to conventional statistical methods. While conventional statistical methods favor patients' characteristics, we found the pathology and surgery-related (histology, anatomical localization, surgical access) variables to be better predictors of EPC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/neuros/nyz145 | DOI Listing |
Curr Eye Res
January 2025
Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA.
Purpose: This study aimed to initially test whether machine learning approaches could categorically predict two simple biological features, mouse age and mouse species, using the retinal segmentation metrics.
Methods: The retinal layer thickness data obtained from C57BL/6 and DBA/2J mice were processed for machine learning after segmenting mouse retinal SD-OCT scans. Twenty-two models were trained to predict the mouse groups.
AAPS J
January 2025
Department of BioAnalytical Sciences, Genentech Inc, South San Francisco, California, USA.
Protein-based therapeutics may elicit undesired immune responses in a subset of patients, leading to the production of anti-drug antibodies (ADA). In some cases, ADAs have been reported to affect the pharmacokinetics, efficacy and/or safety of the drug. Accurate prediction of the ADA response can help drug developers identify the immunogenicity risk of the drug candidates, thereby allowing them to make the necessary modifications to mitigate the immunogenicity.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of Neurosurgery, Mount Sinai Hospital, Icahn School of Medicine, New York City, NY, USA.
Currently, the World Health Organization (WHO) grade of meningiomas is determined based on the biopsy results. Therefore, accurate non-invasive preoperative grading could significantly improve treatment planning and patient outcomes. Considering recent advances in machine learning (ML) and deep learning (DL), this meta-analysis aimed to evaluate the performance of these models in predicting the WHO meningioma grade using imaging data.
View Article and Find Full Text PDFLasers Med Sci
January 2025
Erzincan University, 24002, Erzincan, Turkey.
The aesthetic understanding has found its place in dental clinics and prosthetic dental treatment. Determining the appropriate prosthetic tooth color between the clinician, patient and technician is a difficult process due to metamerism. Metamerism, known as the different perception of the color of an object under different light sources, is caused by the lighting differences between the laboratory and the dental clinic.
View Article and Find Full Text PDFGenes Genomics
January 2025
Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden.
Background: Cyanobacteria, particularly Synechocystis sp. PCC 6803, serve as model organisms for studying acclimation strategies that enable adaptation to various environmental stresses. Understanding the molecular mechanisms underlying these adaptations provides insight into how cells adjust gene expression in response to challenging conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!