The combination of optical clearing with light microscopy has a number of applications in the whole-brain imaging of mice. However, the initial processing time of optical clearing is time consuming, and the protocol is complicated. We propose a novel method based on on-line optical clearing. Agarose-embedded mouse brain was immersed in the optical clearing reagent, and clearing of the brain was achieved ~100 μm beneath the sample surface. After imaging, the cleared layer was removed, thereby allowing layer-by-layer clearing and imaging. No pre-immersion was required, and we demonstrated that on-line optical clearing can reduce the whole-brain imaging time by half.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6524591PMC
http://dx.doi.org/10.1364/BOE.10.002612DOI Listing

Publication Analysis

Top Keywords

optical clearing
24
on-line optical
12
whole-brain imaging
12
clearing
8
imaging mice
8
imaging
5
optical
5
clearing method
4
method whole-brain
4
mice combination
4

Similar Publications

This study aims to compare the efficacy and safety of femtosecond laser-assisted implantable collamer lens (ICL) implantation with traditional manual ICL techniques. A retrospective analysis was conducted on patients who underwent ICL implantation at Beijing New Vision Eye Hospital in 2023. Patients (aged 18-45) were matched for gender and refractive error, with forty-two eyes in each group.

View Article and Find Full Text PDF

Purpose: We demonstrate a novel approach for the definitive treatment of Lisch epithelial corneal dystrophy via an unintentionally staged alcohol keratectomy and intentionally targeted minor limbal excision with cautery.

Methods: A 46-year-old woman presented with visually significant corneal changes, suspected to be Lisch epithelial corneal dystrophy after clinical examination, anterior segment optical coherence tomography, and confocal microscopy. Alcohol keratectomy was performed with complete resolution, but there was visually significant recurrence at 2 years.

View Article and Find Full Text PDF

(1) Background: Ultra-high dose rate (UHDR) radiation therapy needs a reliable dosimetry solution and scintillation detectors are promising candidates. In this study, we characterized an inorganic powder-based scintillation detector under a 9 MeV UHDR electron beam. (2) Methods: A mixture of ZnS:Ag powder and optic glue was coupled to an 8 m Eska GH-4001-P polymethyl methacrylate (PMMA) optical fiber.

View Article and Find Full Text PDF

Clear aligners have transformed orthodontic care by providing an aesthetic, removable alternative to traditional braces. However, their significant environmental footprint, contributing to approximately 15,000 tons of plastic waste annually, poses a critical challenge. To address this issue, advancements in 4D printing have introduced "smart" aligners with shape memory properties, enabling reshaping and reducing the number of aligners required per treatment.

View Article and Find Full Text PDF

Enhanced Circularly Polarized Green Luminescence Metrics from New Enantiopure Binary -Pyrazolonate-Tb Complexes.

Molecules

December 2024

Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, China.

Achieving superior circularly polarized luminescence brightness () is an important subject and continuous challenge for chiroptical materials. Herein, by applying a binary molecular design for the synthesis of chiral organo-Tb molecules, a novel pair of mononuclear chiral -pyrazolate-Tb enantiomers, [Tb(PMIP)(,-Ph-PyBox)] () and [Tb(PMIP)(,-Ph-PyBox)] (), have been synthesized and characterized. The three 1-phenyl-3-methyl-4-(isobutyryl)-5-pyrazolone () ligands play the role of efficient luminescence sensitizers and strong light-harvesting antennas, while the enantiopure 2,6-bis(4-phenyl-2-oxazolin-2-yl) pyridine ligand (/) is employed as the strong point-chiral inducer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!