High content of chromium in plants hampers plants' metabolism, disrupts plant growth and development. Therefore, improving plants' tolerance to Cr toxicity is very essential. In our present study, we investigated the role of citric acid (CA) on chromium detoxification in terms of stress tolerance in rice. Application of CA under Cr stress restore the growth parameters, total protein content and membrane stability confirming that CA plays important role in Cr detoxification in rice. However, supplementation of CA under Cr stress caused no significant change in root Cr content but increased shoot Cr concentration (97 µg/g) compare with Cr stressed plant (24 µg/gm), suggesting that CA alleviates Cr toxicity by its chelating properties. Moreover, Fe content showed no significant changes due to CA supplementation under Cr stress, implying that Fe regulation is not involved with CA-mediated mitigation of Cr toxicity in rice. Furthermore, increased CAT, POD, and GR activity along with raised metabolites (glutathione and proline) indicates active participation in ROS scavenging and palliate the Cr toxicity in rice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15226514.2019.1619162 | DOI Listing |
World J Microbiol Biotechnol
January 2025
Engineering Research Centre for Waste Oil Recovery Technology and Equipment, Ministry Education, Chongqing Technology and Business University, Chongqing, 400067, China.
In recent years, it has become widely acknowledged that heavy metals are often present in oil-contaminated sites. This study utilized three specific types of microorganisms with different functions to construct a composite bacterial consortium for treating lubricant-Cr(VI) composite pollutants. The selected strains were Lysinbacillus fusiformis and Bacillus tropicus.
View Article and Find Full Text PDFMicroorganisms
December 2024
Environmental Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh.
Environmental pollution from metal toxicity is a widespread concern. Certain bacteria hold promise for bioremediation via the conversion of toxic chromium compounds into less harmful forms, promoting environmental cleanup. In this study, we report the isolation and detailed characterization of a highly chromium-tolerant bacterium, CRB14.
View Article and Find Full Text PDFCells
December 2024
Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India.
The quest for cleaner and sustainable energy sources is crucial, considering the current scenario of a steep rise in energy consumption and the fuel crisis, exacerbated by diminishing fossil fuel reserves and rising pollutants. In particular, the bioaccumulation of hazardous substances like trivalent chromium has not only disrupted the fragile equilibrium of the ecological system but also poses significant health hazards to humans. Microalgae emerged as a promising solution for achieving sustainability due to their ability to remediate contaminants and produce greener alternatives such as biofuels.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Plant Science and Technology College, Beijing University of Agriculture, Beijing, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China. Electronic address:
Soil chromium (Cr) stress has a well-recognized negative impact on plant growth, and intercropping is a commonly used method to mitigate heavy metal toxicity to main plants. However, the responses of root exudates-microbial and their interactions among soil zones to soil Cr stress are always in need of clarification in intercropping system. In this study, three intercropping patterns (CT, Malus only; TM, Malus × Mentha and TA, Malus × Ageratum) with different soil Cr addition levels (NCR, LCR, HCR) were applied, and the rhizosphere ecological traits in the main plant (FRS) and intercrop (ARS) were investigated.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!