AI Article Synopsis

  • Advanced liquid-repelling materials have important uses in various fields, especially those that resist both water and oil-based stains.
  • This study introduces a new method for creating a durable slippery liquid-infused porous surface (SLIPS) using poly(high internal phase emulsion) (polyHIPE) that combines self-repairing and self-cleaning features.
  • The resulting polyHIPE-based SLIPS membranes can effectively repel both liquid and solid contaminants while maintaining their performance through self-repair, showing potential for applications in biomedical, self-cleaning, and antifouling materials.

Article Abstract

Advanced liquid-repelling materials that resist both water-based and oil-based contaminants have significant applications in many fields. Herein, a novel protocol for the fabrication of a robust poly(high internal phase emulsion) (polyHIPE)-based slippery liquid-infused porous surface (SLIPS) system with combined self-repairing and self-cleaning properties is developed. Specifically, polystyrene-based polyHIPE (PS-HIPE) membranes with an interconnected porous structure were prepared from polymerization of the continuous oil phase in the water-in-oil HIPE templates. These polyHIPE membranes were used, for the first time, as porous substrates for loading low surface tension silicone oils as lubricating liquids for the fabrication of polyHIPE-based SLIPS membranes. These polyHIPE-based SLIPS membranes could easily repel both water- and oil-based contaminants (e.g., ink, milk, and coffee) with very low sliding angles (3.0 ? 1.3?) and could even repel solid contaminants (e.g., dust) upon washing with water. Meanwhile, such membranes exhibit excellent self-repairing properties so that physical scratching damage, such as cutting a trench, does not affect the liquid-repelling performance. The liquid-repelling ability could be recovered completely within 10 s. More significantly, such a SLIPS membrane shows excellent durability so that the water sliding angle of the SLIPS could be maintained at less than 5.0? for about 80 cycles owing to the regenerated poly(dimethylsiloxane) layer on the surface. This work represents a robust methodology to enrich the development of hydrophobic and oleophobic slippery surfaces, which is promising for many areas, such as biomedical, self-cleaning, antifouling, and self-repairing materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.9b01115DOI Listing

Publication Analysis

Top Keywords

polyhigh internal
8
internal phase
8
phase emulsion
8
slippery liquid-infused
8
liquid-infused porous
8
self-repairing properties
8
oil-based contaminants
8
polyhipe-based slips
8
slips membranes
8
slips
5

Similar Publications

Thiol-Acrylate polyHIPEs via Facile Layer-by-Layer Photopolymerization.

3D Print Addit Manuf

June 2024

PolyOrgLab, Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia.

A highly reactive thiol-ene high internal phase emulsion based on the monomers 1,6-hexanediol diacrylate and tris 2-(3-mercaptopropionyloxy)ethyl isocyanurate was developed for the purpose of light-driven additive manufacturing, resulting in highly porous customizable poly(high internal phase emulsion) materials. The formulation was specifically designed to facilitate short irradiation times and low amounts of photoinitiator. Furthermore, the developed emulsion does not rely on employing harmful solvents to make scale-up and industrial applications feasible.

View Article and Find Full Text PDF

This paper deals with the preparation of new composites between polymerized/crosslinked high internal phase emulsions (polyHIPEs) and carbon nanotubes (CNTs), specifically designed for pharmaceutical analytical applications. While the composition of the polyHIPEs was maintained constant, the amount of CNTs was varied from 0.5% to 1% w/v.

View Article and Find Full Text PDF

With the aim to study the influence of monomer ratio in poly(high internal phase emulsions) (polyHIPEs) on the polymer network architecture and morphology of poly(vinylbenzyl chloride-co-divinylbenzene-co-styrene) after hypercrosslinking via the internal Friedel-Crafts process, polyHIPEs with 80% overall porosity were prepared at three different initial crosslinking degrees, namely 2, 5, and 10 mol.%. All had typical interconnected cellular morphology, which was not affected by the hypercrosslinking process.

View Article and Find Full Text PDF

This paper shows one of the few examples in the literature on the feasibility of novel materials from natural and biocompatible polymers like inulin (INU) or glycol chitosan (GCS) templated by the formation of / (inverse) high internal phase emulsion (HIPE). To the best of our knowledge, this is the first example of inverse polyHIPEs obtained from glycol chitosan or inulin. The obtained polyHIPEs were specifically designed for possible wound dressing applications.

View Article and Find Full Text PDF

Polylactide [PLA, two enantiomers: poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA)] has been widely applied as biomaterials because of its biocompatibility, biodegradability, and good mechanical capacity. However, the chirality of PLA materials has not been intensively explored yet. In the present study, chiral porous poly(high internal-phase emulsion)s (polyHIPEs) derived from enantiopure PLAs were successfully prepared via a HIPE template method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!