PIGQ (OMIM *605754) encodes phosphatidylinositol glycan biosynthesis class Q (PIGQ) and is required for proper functioning of an N-acetylglucosamine transferase complex in a similar manner to the more established PIGA, PIGC, and PIGH. There are two previous patients reported with homozygous and apparently deleterious PIGQ mutations. Here, we provide the first detailed clinical report of a patient with heterozygous deleterious mutations associated with glycosylphosphatidylinositol-anchored protein (GPI-AP) biosynthesis deficiency. Our patient died at 10 months of age. The rare skeletal findings in this disorder expand the differential diagnosis of long bone radiolucent lesions and sphenoid wing dysplasia. This clinical report describes a new and rare disorder-PIGQ GPI-AP biosynthesis deficiency syndrome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajmg.a.61185 | DOI Listing |
Vavilovskii Zhurnal Genet Selektsii
November 2024
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
We present a series of articles proving the existence of a previously unknown mechanism of interaction between hematopoietic stem cells and extracellular double-stranded DNA (and, in particular, double-stranded DNA of the peripheral bloodstream), which explains the possibility of emergence and fixation of genetic information contained in double-stranded DNA of extracellular origin in hematopoietic stem cells. The concept of the possibility of stochastic or targeted changes in the genome of hematopoietic stem cells is formulated based on the discovery of new, previously unknown biological properties of poorly differentiated hematopoietic precursors. The main provisions of the concept are as follows.
View Article and Find Full Text PDFACS Omega
December 2024
Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.
Here, we describe an innovative and efficient method for screening peptide activators of G-protein-coupled receptors (GPCRs) utilizing a protein-protein interaction (PPI) approach. We designed a library of 92,918 peptides fused with transmembrane domains of glycosylphosphatidylinositol-anchored proteins (GPI-APs). We employed a pooled lentiviral system to promote the expression of these proteins at the cellular membrane and evaluate their ability to activate GPCRs.
View Article and Find Full Text PDFEur J Clin Invest
December 2024
Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany.
Background: CEACAM1 in leukocytes controls cell activation during inflammation. This and its expression in epithelial cells led to frequent independent appropriation of CEACAM1 as receptor by pathogens in humans and other species to gain host access and to downregulate its immune response. As a countermeasure, decoy receptors with CEACAM1-like pathogen-binding domains evolved.
View Article and Find Full Text PDFLife Sci Alliance
February 2025
Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, SAR of China
The plasma membrane has a complex organization that includes the polarized distribution of membrane proteins and lipids. Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are ubiquitously expressed in eukaryotes and represent a functionally diverse, extensively remodeled, ER-derived group of proteins critical for the organization and function of the plasma membrane. Little is known about how the transport of incompletely remodeled GPI-APs to the plasma membrane affects cell function.
View Article and Find Full Text PDFPlant Cell Rep
November 2024
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China.
Glycosylphosphatidylinositol-anchored protein (GPI-AP) Aa049 works as a key pathogenic factor to assist A. alternata in infecting plants, which is associated with the reactive oxygen species (ROS) pathway. Chrysanthemum black spot disease is a common fungal disease caused by A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!