AI Article Synopsis

Article Abstract

Purpose: The TAPIR sequence is an accurate and efficient method for T mapping. It combines a slice-interleaving Look-Locker read-out with an acquisition of multiple k-space lines in 1 shot. Whereas the acquisition of multiple lines per excitation increases imaging speed, the corresponding increase in TR and TE is detrimental to the T fitting performance. This is especially problematic for substances exhibiting rapid T relaxation (e.g., myelin water).

Methods: The T fitting performance of TAPIR is enhanced by using an interleaved spiral read-out with shorter TE and TR. Furthermore, an improvement to a method for fast gradient delay estimation is presented. Whereas previous methods assume the gradient delay to be stationary, the presented approach corrects the spiral k-space trajectory by using a polynomial fit of the measured gradient delays.

Results: Gradient delay artifacts are largely eliminated, requiring very little additional scanning time. The sampling efficiency of the spiral read-out allows for a significant reduction of the acquisition time in comparison to Cartesian TAPIR. Spiral TAPIR enables the sampling of more slices and an accurate measurement of rapidly relaxing compartments. Over a wide T range (448-3115 ms), spiral TAPIR reduces the mean fitting error from -2.5% to -0.1%. Combining 50% undersampling with the shorter TR of spiral TAPIR, an increase in imaging speed by a factor of up to 3.3 was achieved.

Conclusion: Using a spiral read-out trajectory, the established TAPIR sequence enables measurement of rapidly relaxing T compartments, while improving T mapping performance and imaging speed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.27797DOI Listing

Publication Analysis

Top Keywords

gradient delay
16
spiral tapir
16
rapidly relaxing
12
relaxing compartments
12
imaging speed
12
spiral read-out
12
spiral
8
tapir
8
tapir sequence
8
acquisition multiple
8

Similar Publications

Background: Sepsis, a critical global health challenge, accounted for approximately 20% of worldwide deaths in 2017. Although the Sequential Organ Failure Assessment (SOFA) score standardizes the diagnosis of organ dysfunction, early sepsis detection remains challenging due to its insidious symptoms. Current diagnostic methods, including clinical assessments and laboratory tests, frequently lack the speed and specificity needed for timely intervention, particularly in vulnerable populations such as older adults, intensive care unit (ICU) patients, and those with compromised immune systems.

View Article and Find Full Text PDF

Background: Prostate cancer was the fourth most diagnosed cancer worldwide in 2022. Radical treatments and androgen deprivation therapy benefit newly diagnosed patients but impact quality of life, often leading to castration-resistant prostate cancer. Short-term dietary changes significantly affect the gut microbiota, which differs markedly between prostate cancer patients and healthy individuals, impacting both cancer progression and treatment response.

View Article and Find Full Text PDF

For individuals at high risk of developing breast cancer, interventions to mitigate this risk include surgical removal of their breasts and ovaries or five years treatment with the anti-estrogen tamoxifen or aromatase inhibitors. We hypothesized that a silicone based anti-estrogen-eluting implant placed within the breast would provide the risk reduction benefit of hormonal therapy, but without the adverse effects that limit compliance. To this end, we demonstrate that when placed adjacent to mammary tissue in the 7,12-dimethylbenz[a]anthracene-induced rat breast cancer model a fulvestrant-eluting implant delays breast cancer with minimal systemic exposure.

View Article and Find Full Text PDF

Gadopiclenol Enables Reduced Gadolinium Dose While Maintaining Quality of Pulmonary Arterial Enhancement for Pulmonary MRA: An Opportunity for Improved Safety and Sustainability.

Invest Radiol

January 2025

From the Departments of Radiology (J.F.H., S.Y.C., J.-P.G., J.S., P.N., S.B.R., T.M.G.), Biomedical Engineering (S.B.R., T.M.G.), Medical Physics (S.Y.C., S.B.R., T.M.G.), Medicine (S.B.R.), and Emergency Medicine (S.B.R.), University of Wisconsin-Madison, WI; and Department of Diagnostic and Interventional Radiology (J.F.H., J.-P.G.), University Hospital Würzburg, Würzburg, Germany.

Rationale And Objectives: Pulmonary magnetic resonance angiography (MRA) is an imaging method with proven utility for the exclusion of pulmonary embolism and avoids the need for ionizing radiation and iodinated contrast agents. High-relaxivity gadolinium-based contrast agents (GBCAs), such as gadopiclenol, can be used to reduce the required gadolinium dose for pulmonary MRA. The aim of this study was to compare the contrast enhancement performance of gadopiclenol with an established gadobenate dimeglumine-enhanced pulmonary MRA protocol.

View Article and Find Full Text PDF

Gradient Design with Low-tortuosity Overcoming Kinetic Limitations in High-Loading Solid-State Cathodes.

Angew Chem Int Ed Engl

January 2025

UT Austin: The University of Texas at Austin, Materials Science and Engineering, 1 University Station C2200, 78712, Austin, UNITED STATES OF AMERICA.

The extensive commercialization of practical solid-state batteries (SSBs) necessitates the development of high-loading solid-state cathodes with fast charging capability. However, electrochemical kinetics are severely delayed in thick cathodes due to tortuous ion transport pathways and slow solid-solid ion diffusion, which limit the achievable capacity of SSBs at high current densities. In this work, we propose a conductivity gradient cathode with low-tortuosity to enable facile ion transport and counterbalance ion concentration gradient, thereby overcoming the kinetic limitations and achieving fast charging capabilities in thick cathodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!