Improvement in biorefining technologies coupled with development of novel fermentation strategies and analysis will be paramount in establishing supplementary and sustainable biofuel pathways. Oleaginous microorganisms that are capable of accumulating triacylglycerides (TAGs) and fatty acid methyl esters (FAMEs), such as Rhodococcus and Yarrowia species, can be used to produce second-generation biofuels from non-food competing carbon sources. These "microbiorefineries" provide a pathway to upgrade agricultural and industrial waste streams to fungible fuels or precursors to chemicals and materials. Here we provide a general overview on cultivating Rhodococcus and Yarrowia on agro-waste/industrial biomass pretreatment waste streams to produce single-cell oils/lipids and preparing samples for FAME detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-9484-7_5 | DOI Listing |
Curr Res Microb Sci
November 2024
Department of Microbiology, University of Nigeria, Nsukka 410001, Nigeria.
Pollution from fossil fuel usage coupled with its unsustainability is currently instigating a global drive for affordable and eco-friendly alternatives. A feasible replacement seems to be microbial biofuels. However, the production cost is still high, partly due to the cost of substrates and media.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
September 2019
Institute of Microbiology, University Greifswald, Felix-Hausdorff-Straße 8, 17489, Greifswald, Germany.
Bacteria and fungi were isolated from eight different soil samples from different regions in Kazakhstan contaminated with oil or salt or aromatic compounds. For the isolation of the organisms, we used, on the one hand, typical hydrocarbons such as the well utilizable aliphatic alkane tetradecane, the hardly degradable multiple-branched alkane pristane, and the biaromatic compound biphenyl as enrichment substrates. On the other hand, we also used oxygenated derivatives of alicyclic and monoaromatic hydrocarbons, such as cyclohexanone and p-tert-amylphenol, which are known as problematic pollutants.
View Article and Find Full Text PDFMethods Mol Biol
February 2020
Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA.
Improvement in biorefining technologies coupled with development of novel fermentation strategies and analysis will be paramount in establishing supplementary and sustainable biofuel pathways. Oleaginous microorganisms that are capable of accumulating triacylglycerides (TAGs) and fatty acid methyl esters (FAMEs), such as Rhodococcus and Yarrowia species, can be used to produce second-generation biofuels from non-food competing carbon sources. These "microbiorefineries" provide a pathway to upgrade agricultural and industrial waste streams to fungible fuels or precursors to chemicals and materials.
View Article and Find Full Text PDFFront Microbiol
October 2018
Department of Life Science, Chung-Ang University, Seoul, South Korea.
A native microbial consortium for the bioremediation of soil contaminated with diesel fuel in Korea was constructed and its biodegradation ability was assessed. Microbial strains isolated from Korean terrestrial environments, with the potential to biodegrade aliphatic hydrocarbons, PAHs, and resins, were investigated and among them, eventually seven microbial strains, DR1, sp. KSS-2, sp.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
October 2017
Department of Energy, Environmental and Chemical Engineering, Washington University, Saint Louis, MO, 63130, USA.
Genetically modified microbes have had much industrial success producing protein-based products (such as antibodies and enzymes). However, engineering microbial workhorses for biomanufacturing of commodity compounds remains challenging. First, microbes cannot afford burdens with both overexpression of multiple enzymes and metabolite drainage for product synthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!