Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
During exposure of cells to acute high dose-rate ionizing radiation (IR), oxidants from the radiolysis of water can overwhelm antioxidant systems. Protecting flora from the effects of IR released from a nuclear industry of increasing global significance and managing the growth of plants during space flight both necessitate estimating the effects of chronic low dose-rate exposure to IR. In contrast to effects at acute high-dose rates, under chronic low dose-rate exposure it is subtle, progressive, long-term effects on antioxidant systems that it is important to estimate. Here, we outline a method that combines biochemical measurement and mathematical modeling to predict the effects of chronic low dose-rate IR on redox potential in plant cells over time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-9463-2_11 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!