Background: Mammographic breast density (MBD) is an independent risk factor for breast cancer. Information regarding the relationship of MBD and breast cancer biology in women with ductal carcinoma in situ (DCIS) is currently lacking. This study aimed to examine the clinicopathologic characteristics of DCIS in women stratified by MBD.

Methods: A retrospective review was performed to identify women with pure DCIS who underwent preoperative mammography between 2010 and 2018. Clinicopathologic and demographic data were collected. For the purpose of analysis, MBD was categorized as "non-dense" (Breast Imaging-Reporting and Data System [BI-RADS] density categories A and B) or "dense" (BI-RADS C and D) according to its identification in radiology reports.

Results: Of 3227 patients with a breast cancer diagnosis enrolled in the institutional Breast Cancer Database during the study period, 658 (20%) had pure DCIS. Of these 658 patients, 42% had non-dense breasts, and 58% had dense breasts. Most lesions were non-palpable (92%) and detected by mammography (84%). Patients with dense breasts were more likely to be younger at the time of diagnosis (p < 0.001), premenopausal (p < 0.001), and Asian (p = 0.018), and to have higher-grade disease (p = 0.006; Table 2). Family history, BRCA status, parity, mammogram frequency, palpability, method of presentation, lesion size, hormone receptor status, comedo histology, and recurrence did not differ significantly between the two groups (Table 1). The median follow-up period was 7.1 years.

Conclusion: Women with pure DCIS and higher MBD are more likely to be younger at the time of diagnosis, premenopausal, and Asian, and to present with higher-grade disease. Further research on the relationship of age, MBD, and tumor biology in DCIS is warranted.

Download full-text PDF

Source
http://dx.doi.org/10.1245/s10434-019-07479-5DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
breast density
8
women ductal
8
ductal carcinoma
8
carcinoma situ
8
situ dcis
8
pure dcis
8
dense breasts
8
breast
7
dcis
5

Similar Publications

This study utilizes single-cell RNA sequencing data to reveal the transcriptomic characteristics of breast cancer and normal epithelial cells. Nine significant cell populations were identified through stringent quality control and batch effect correction. Further classification of breast cancer epithelial cells based on the PAM50 method and clinical subtypes highlighted significant heterogeneity between triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (NTNBC).

View Article and Find Full Text PDF

Delays in chemotherapy and radiotherapy of breast cancer during COVID-19 pandemic.

J Infect Public Health

January 2025

Preventive Medicine and Public Health Research Center, Psychosocial Health Research Institute, Department of Community and Family Medicine, School of Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O Box: 14665-354, Tehran 1449614535, Iran.

Background: During the COVID-19 pandemic, hospitals were overwhelmed with infected patients, leading to a disruption in the delivery of services. Patients with cancer, including breast cancer, rely on timely treatment, as delays can reduce survival rates. In this study, we investigated delays in treatment and the factors contributing to delays in chemotherapy and radiotherapy for these patients.

View Article and Find Full Text PDF

Purpose: After the diagnosis of breast cancer, women's sexuality becomes complex, and the sexual lives of couples are strongly affected by the treatment process of the disease. The aim of this study is to determine the perceptions, experiences, expectations, and needs related to sexuality from the perspective of women diagnosed with breast cancer and their partners.

Method: In this study, a descriptive qualitative design based on a thematic analysis approach was used.

View Article and Find Full Text PDF

In the past few years, three protein molecules-USP53, NPY2R, and DCTN1-AS1-have garnered significant attention in scientific research due to their potential implications in tumor development. Mass spectrometry and proteomics techniques were used to analyze the three-dimensional structure of these protein molecules and predict their active sites and functional domains. The effects of USP53, NPY2R and DCTN1-AS1 on biological behavior of tumor cells were studied by constructing gene knockout and overexpression cell models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!