Purpose: Anastasis is newly discovered process by which cells recover from late-stage apoptosis upon removal of a death stimulus. Recent reports suggest that cells may recover, even after the initiation of mitochondrial outer-membrane permeabilization (MOMP) and caspase activation. Here, we specifically studied the reversibility of late-stage apoptosis in cervical (HeLa) and breast (MDA-MB-231) cancer cells in relation to the extent of MOMP (limited or widespread). In addition, we explored the molecular factors involved in the anastatic process.
Methods: The extent of MOMP was assessed using time lapse confocal microscopic imaging, considering mitochondrial cytochrome c-GFP release as a marker for MOMP. Anastatic cells were generated by specifically recovering late-stage apoptotic (annexin V/PI positive) cervical and breast cancer cells. Molecular signaling events involved in death reversal were assessed using LC-MS/MS and qRT-PCR. Targeted chemical inhibition and shRNA-based gene silencing studies were employed to explore the role of the nuclear export pathway in anastasis and increased oncogenicity.
Results: Time-lapse imaging of drug-treated Cyt-c-GFP expressing cancer cells revealed cell recovery despite widespread MOMP. A few recovered anastatic cells were noted and these were found to proliferate through a selection-type of survival. They showed increased drug-resistance, migration and invasive potential compared to non-anastatic cancer cells. Network analysis using 49 proteins uniquely expressed in anastatic cells indicated upregulation of nuclear export/import, redox and Ras signaling pathways in both HeLa and MDA-MB-231 anastatic cells, indicating common molecular mechanisms in different cell types. Inhibition of XPO1 significantly reduced the recovery of apoptotic cells and abrogated acquired oncogenic transformation in the anastatic cancer cells.
Conclusions: Our study indicates that cancer cells can revert from apoptosis even after the induction of widespread MOMP. We noted a significant role of the nuclear-export pathway in the anastatic process of cancer cells. Inhibition of anastasis through the nuclear export pathway may be a potential therapeutic strategy for targeting drug-resistance, metastasis and recurrence problems during cancer treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13402-019-00451-1 | DOI Listing |
Chem Biodivers
January 2025
Guizhou Medical University, School of Pharmaceutical Sciences, University Town, Gui'an New District, 550025, Guiyang, CHINA.
An unrevealed dihydroflavone-monoterpene conjugate (1), two unrevealed kavalactones (2-3, including one with an uncommon side chain), and thirteen previously identified compounds (4-16) were extracted from Alpinia katsumadai Hayata. seeds. The two-dimension structures of the new compounds were authenticated utilizing HRESIMS as well as NMR spectral analysis, while their absolute chiral configurations were ascertained either by correlating the experimental and simulated values of electronic circular dichroism (ECD) patterns or conducting X-ray diffraction experiments.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China.
Background: In several studies of head and neck squamous cell carcinoma (HNSC), the regulation of tumorigenesis and therapeutic sensitivity by pyroptosis has been observed. However, a systematic analysis of gasdermin family members (GSDMs, including GSDMA/B/C/D/E and PJVK), which are deterministic executors of pyroptosis, has not yet been reported in HNSC.
Methods: We performed comprehensive analyses of the expression profile, prognostic value, regulatory network, and immune infiltration modulation of GSDMs in HNSC on the basis of a computational approach and bioinformatic analysis of publicly available datasets.
Background And Aim: The high rate of tumor growth results in an increased need for amino acids. As solute carriers (SLC) transporters are capable of transporting different amino acids, cancer may develop as a result of these transporters' over-expression due to their complex formation with other biological molecules. Therefore, this review investigated the role of SLC transporters in the progression of cancer.
View Article and Find Full Text PDFVet Res Forum
November 2024
Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Docetaxel (DTX) is widely utilized in breast cancer treatment. However, cancer cell resistance has limited its anti-tumor efficacy. Some molecules called microRNAs (miRNAs), acting like fine-tuned switches, can influence how breast cancer develops and spreads.
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2025
Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA 22903, USA.
The CDKN2A gene, responsible for encoding the tumor suppressors p16(INK4A) and p14(ARF), is frequently inactivated in non-small cell lung cancer (NSCLC). Herein, an uncharacterized long non-coding RNA (lncRNA) (ENSG00000267053) on chromosome 19p13.12 was found to be overexpressed in NSCLC cells with an active, wild-type CDKN2A gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!