Introduction: Pancreatic cancer (PC) is one of the most aggressive malignancies, and it's difficult to diagnosis PC at an early stage, which leads to the poor prognosis of PC.
Objectives: To identifiy the possible prognosis or dignosis metabolite biomarkers in the serum exosome of PC patients.
Methods: We employed LC-DDA-MS based untargeted lipidomic analysis to search for potential candidate biomarkers in the serum exosome of PC patients. Then LC-MRM-MS based targeted lipid quantification was used to validate the trends of the candidate biomarkers in larger sample cohorts.
Results: About 270 lipids belonging to 20 lipid species were found significantly dysregulated between the serum exosome of PC patients and healthy controls. 61 of them were validated in larger samples size. We further analysis the correlation between these dysregulated lipids and other PC related factors, and results show that LysoPC 22:0, PC (P-14:0/22:2) and PE (16:0/18:1) are all associated with tumor stage, CA19-9, CA242 and tumor diameter. What's more, PE (16:0/18:1) is also found to be significantly correlated with the patient's overall survival.
Conclusion: These data reveal dysregulated lipids in serum exosome of PC patients, which have potential to be biomarkers for diagnosis, or unveil pathological relationship between exosome and PC progress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11306-019-1550-1 | DOI Listing |
J Orthop Surg Res
January 2025
Department of Hand-Foot Microsurgery, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.
Background: Steroid-induced osteonecrosis of the femoral head (SIONFH) is a universal hip articular disease and is very hard to perceive at an early stage. The understanding of the pathogenesis of SIONFH is still limited, and the identification of efficient diagnostic biomarkers is insufficient. This research aims to recognize and validate the latent exosome-related molecular signature in SIONFH diagnosis by employing bioinformatics to investigate exosome-related mechanisms in SIONFH.
View Article and Find Full Text PDFJ Transl Med
January 2025
The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
Background: Bone marrow mesenchymal stem cells (BMSCs) are a crucial component of the tumor microenvironment (TME), with hypoxic conditions promoting their migration to tumors. Exosomes play a vital role in cell-to-cell communication within the TME. Hypoxic TME have a great impact on the release, uptake and biofunctions of exosomes.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Respiratory Medicine, First Affiliated Hospital of Huzhou University, Huzhou University, Huzhou, Zhejiang, 313000, China.
Background: LINC00312 has shown to play a suppressive role in the development and progression of non-small cell lung cancer (NSCLC). However, the expression pattern and diagnostic role of circulating LINC00312 in NSCLC remain to be confused.
Methods: A total of 319 patients diagnosed with NSCLC and 180 healthy volunteers were enrolled from the First Affiliated Hospital of Huzhou University between January, 2022 and December, 2023.
Allergol Immunopathol (Madr)
January 2025
Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zheiiang, China.
To illustrate the potential of mesenchymal stem cell-derived exosomes (MSC-Exos) in mitigating septic lung injury by reducing the excessive formation of neutrophil extracellular traps (NETs), a mouse model of septic lung injury was induced through cecal ligation and puncture (CLP). The mice received intraperitoneal injections of MSC-Exos. Post injection, pathological alterations of the lung tissue were evaluated through HE staining, and the levels of inflammatory markers in each mouse group at various time points were assessed using ELISA kits.
View Article and Find Full Text PDFCurr Pharm Des
January 2025
Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
Intrauterine adhesion (IUA) is a condition caused by damage to the basal uterine layer which can lead to partial or full occlusion of the uterine cavity. Although traditional treatment options have been useful in mild and moderate cases, they have been unsatisfactory in severe IUA cases. Therefore, it is essential to improve the treatment strategies of IUA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!